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Abstract

In this paper, we extend previous work on the evolution
of continuous-timeecurrent neurahetworks formini-
mally cognitivebehavior (the simplestbehavior that
raises issues of genuine cognitive interest). Previously,
we evolved dynamical “nervousystems” fororienta-
tion, reaching,and discrimination. Here we evolve
agents thatan judgethe passability of openingela-
tive to their own body size, discriminate between
visible parts of themselveand other objects in their
environment,predictandrememberthe future location

of objects in order to catch them blirahd switch their
attention between multiple distal objects.

1. Introduction

Notions of situatedness, embodiment and dynaaniesplay-
ing an increasingly influential role in both tHeundations
and the practice of cognitive science(Clark, 1997; Beer,
2000). This offers an excellent opportunity for workantap-
tive behavior to contribute to cognitive sciene@d many
such effortsare underwayBrooks & Stein, 1994; Almassy
et al.,, 1998;Pfeiffer & Scheier, 1999). Evolutionary ap-
proachesare particularly fruitful becausethey allow an
exploration of possible cognitivarchitectures relatively
unencumbered by priori assumptions. Sucapproaches are

being successfully applied to increasingly more sophisticat

behavior (Harvey eal., 1994; Cliff & Miller, 1996;Naka-
hara & Doya, 1997; Parisi, 1997; Di Paolo, 1997).

In our own work, we use genetic algorithms ewolve
dynamical “nervous systems” for model ageatsl then ana-
lyze the dynamics of the resulting systefBser,1997). We
believe that such simpler idealized models can servé&ias

tionlessplanes” in which basic theoretical principles of the

dynamics of agent-environmesystemscan beworkedout.

Because we areltimately interested incognitive questions,
we have begun to focukis work onminimally cognitive
behavior the simplest possiblagent-environmensystems
that raiseissues of genuine cognitive inter¢Beer, 1996).

If we hope to evolveandultimately analyze in detaimodel

agents exhibiting genuinely cognitive behavior, itegsen-
tial to focus on the simplest possibégent-environment
systems that exhibit the cognitive behavior of interest.
also important that the cognitive issuasse in a natural
way in the context of the agent’s behavi@therthan being

posedabstractly. In previous work, wiatroduced asimple
visually-guided agenthat could potentially beused to ad-
dress a wide range obasic cognitive phenomena and
demonstratedhe evolution ofdynamical “nervousystems”
for orientationand reaching to objects and discrimination
between objects (Beer, 1996).

In this paper, weextendthis work to awider range of
more complicated tasks. First, we explore agdmsmust
visually decidewhich openings theibodies canand cannot
fit through. Second, we evolve agents that must distinguish
between visible parts of themselvad objects in their en-
vironment. Third, we examine a task thatuires an agent
to predict and remember the future location of a target object
in order tocatch it blind. Finally, weexplore a task in
which an agent must switdls attentionbetweenmultiple
distal objects.

2 . Methods

In all of the experimentdescribed inthis paper, ararray of
proximity sensors allowed an agent to perceive distal objects
that fall toward it from above. If an object intersectqut@x-
imity sensor, the output of that sensor waversely
proportional to the separatidmetweenthe objectand the

agent, with values ranging from 0 (no intersection) to 10

e((5510 separation). The agentoved according tdirst-order

ynamics, with motor neurordirectly specifying theveloc-
ity of movement.

The agent’s behavior was controlled by a continuous-time
recurrent neural networfCTRNN) with the followingstate
equation;

N
T,y = -V, +ijia(gj(yj +6j))+ . i=1...,N
J=1

where Y is the state of each neuron, is its time constant,
w;; is the strength of the connection from ffeto theit™
. . . X Zx

neuron,g is a gain,@ is a bias termo(x) =1/(1+e ")
is the standard logistic activation functiand | represents
an externainput (e.g., from a sensor). Statgereinitial-
ized to 0 and circuits were integratesing theforward Euler
method with an integration step size of 0.1.

A real-valued genetic algorithm (Mitchell, 1996) wased

It i% evolve CTRNNparameters. Apopulation ofindividuals

was maintained, with each individuahcoded as &ngth M
vector of realnumbers. Initially, arandom population of



vectors wasgenerated byinitializing each component of
every individual to random values uniformdljstributedover
the range+1 (they could move outsidethis range during
evolution). Individuals were selectefbr reproductionusing
a linearrank-basedmethod. Aspecifiedelitist fraction of
top individuals in theold populationwere simply copied to

the new one. The remainirgdildren were generated by ei-

ther mutation orcrossoverwith an adjustable crossover
probability. A selected parent was mutateddulging to it a
random displacement vectathosedirection was uniformly
distributed onthe M-dimensionalhypersphereand whose
magnitude was a Gaussian random variabith 0 mean and
varianceg®. The expressiomlerived in the Appendix was
used as a guideline for setting the mutat@niance. Aneu-
ron’s time constant, bias, gaiand input weights were
treated as a module during crossover.

Unless otherwise indicatedearch parameters the range
+1 were mappetinearly into CTRNNparametersvith the
following ranges: connection weights [-5,5], biasesO [-
10,0], gains] [1,5], andtime constant$] [1,2]. All prox-

imity sensorssharedthe same time constant. All CTRNNs

were bilaterally symmetric. While this oftemade trials

involving nearly-centeredobjects difficult, it reflects the
symmetry of the agent and the tasésd it halves the num-
ber of parameters that must be evolved.

3. Perceiving Affordances

Any situated,embodiedagent must be sensitive to treda-
tionship of its own body to itsurroundingsand it must be
able to perceive the actions thihts environmengffords in
somatic terms (Gibson, 1979). For examplegrderfor an
agent toperceive whether onot anaperture ispassable, it
must judge the aperture’s width relative tats own body

(Warren & Wang, 1987). In our first set of experiments, Weqt actions and linearly penalizes near-misses.

evolved agents thatcould accuratelydistinguish between

Squareagents of size 2Mhad 7 proximity sensors of
maximum length 160 uniformlgistributed over avisual
angle ofrv4 (Figure 1). Their horizontal velocity waso-
portional to the sum of opposinfprces produced by a
bilateral pair ofeffectors(with a constant of proportionality
of 8). Walls consisting of twaquares ofvidth 20 separated
by an aperture whose width was in the range [16q2#jped
from abovewith a vertical velocity of 4and ahorizontal
offset of£50 relative to the agent.

The circuitarchitecturewas bilaterally symmetric, with 7
sensory neurons projecting to 6 fulipterconnected in-
terneuronsthat in turn projected to two motor neurons
controlling horizontal motion (for a total of farameters).
Populations of 100ndividualswere evolvedor 2000 gen-
erations with a mutatiowvariancec® of 0.3, acrossover
probability of 0.5 and an elitist fraction of 5%.

The performance measure to be maximized was:

NumTrials

z p,/NumTriaIs

1=1

d| if agent collides with wall

where py = 00 otherwise

for an opening too narrow for the agent to pass through and
o= ax(0,80 - 4ld)
' 00

for anaperture wideenough for the agent to patiwough,
andd, is the final horizontal separation between teater of
the agen@ndthe center ofthe aperture athe end ofthe i
trial. This fithess measure assigmsar-zerditness toincor-
Since
making thecorrect decisiorwithout hitting the wall results

if agent collides with wall
otherwise

passageways and obstacles in a falling wall, passing through significantly higher score, thiperformance measure

openingswide enough toaccommodateheir bodies while
avoiding openings that were too narrow.

-

«[ |»

Figure 1: Experimental setup for thpassability experiments.
The agent movesorizontally while a wall with anadjustable
aperture falls fromabove. The rays of the agent'proximity
sensors are shown in gray.
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Figure 2: Categorization ofpertures into passablend im-
passable by the begtassability agentThe final horizontal
separation between the ageabd the center of the aperture
(meanz s.d.,N = 101 trials) is plotted against the aperture width
relative to the agent’s size.
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Figure 3: Generalization performance of the bestssability

agent. The performance as a functionirgfial horizontal posi-

tion and aperture width relative to the agent is shown as
density plot. The highest performance isshaded whiteand the
lowest performance is shaded black.

also rewardsaccuracy.The search begawith 4 easyand 2
difficult test cases. Everiime that the best agenttserage
fitness exceeded 90%, two additional trials wemtdeduntil a
total of 30 trials was reached.

Out of a total of 30 runs, producedagents thatchieved
an average performance greatean 90% on all 30 trials.
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Figure 4: Behavior of the bespassability agentThe wall’s
horizontal and verticaposition over time relative to thegent
is plotted for an aperture 1 unit smaller than the agent (left) and
1 unit larger than the agent (right). Trials begin at &ogltime
increases from top to bottom.

result in scans thatpeatedlycross the midline, while the
nore peripheral trials result in a slower centering movement
that crosses the midline only once. The tplots qualita-
tively differ only in the final orientation movement, with
the agent eventually moving to avoid an impassapbture
(left), but centering a passable aperture (right).

The strategies of the other top agerdgedwidely. Some
agents distinguishetletween centrabnd peripheraltrials,
while others did not. Some agents initially foveatedaper-
ture, while others initiallyfoveated one side of the wall
instead. Some scanned the wallltiple timesbeforedecid-

The best agentad amean fitness of 99.2% on the 30 ing, while othersscannedbnly once. However,all of the

evaluation trialsand96% on 1000randomtrials. By plot-
ting themean final horizontal separatitretweenthe agent
and the center of the aperture as a functioapefiture width
(Figure 2), weseethat the agent makes\ery sharpcate-
gorical distinction between passableand impassable
apertures at its own body width (dashed dnag). Since the
evaluation trialsare characterized bynly 2 parameters (ini-
tial horizontal offsetand aperturewidth), we can directly
visualize the agent's generalizatiggerformance as a 2-

top agentavere quite decisive. Ithey received dess than
perfect score, it was generalbgcausahey madethe wrong
decision orthey wereslightly sloppy in centering abarely
passable openingnot becausethey equivocated between
centering and avoidance and ended up colligity the mid-
dle of one of the wall blocks.

4 . Self/NonSelf Discrimination
Any agent possessing a spatiadiytendedbody has the po-

dimensional density plot (Figure 3). Note that this agent cagntial to perceivethis body with its own distal sensors.

accurately discriminate apertuseze differencessmaller than
0.5 (2.5% of itsbody size), which isquite goodgiven the

This possibility raises the problem of distinguishirgglf
from nonself depending onwhich of the objects in an

small number of proximity sensors that it possesses. Thgyentsfield of view are underits direct control (Neisser,

gray areas in this plot indicate triphrameteregimeswhere
the agent brushes the wall when passing throughpan
ture. Not surprisingly, the majority of theggay regions
fall betweenthe 30 evaluation trialasedduring evolution.
Interestingly, this agent prefers to err on the sidawiiding
aperturesthat are just barely large enough tdit through

1993). In asecondset of experiments, wevolved agents
that could catch moving objects with an opaque harttese
experimentsextendprevious work on evolving agents that
could point to stationary objects withtmnsparent manipu-
lator (Beer, 1996).

Agents of size 2(had 7 proximity sensors of maximum

rather than trying to fit through apertures that' are too smalliength 160 uniformlydistributed over aisual angle ofrv4

aperturewidths just below(left) and just above (right) the
agent’s width. Note that the two plots exhibitjeeatdeal of
qualitativesimilarity. In both cases, theajectories of mo-
tion aregroupedinto two distinctbundlesdepending on the
initial horizontaloffset of the wall. The distinguishinfga-
ture seems to be whether aot the wall intersects the

hand ofsize 5centered orthe end of atransparent arm of
length 25 with one angulategree of freedorhaving an an-
gularrange of+1/2. The angular velocity of the arm was
proportional to the sum of two opposirigrquesproduced
by a bilateral pair offfectors(with a constant ofpropor-
tionality of 0.15). Circular objects odiameter 20dropped

outermost ray shortly after a trial begins. More central trialgom apove with a vertical velocity of dnd aninitial hori-



Figure 5: Experimental setup foself/nonself discrimination
experiments. The agent isstationary, but can swing an arm

with an opaque hand along an arc while objects fall from above.

zontal offset in theange+24 relative to the agenGiven
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Figure 6: Mean catching accuracy of thebest self/nonself

discrimination agentThe final angularposition ofthe hand is

the initial horizontal offset, an object's horizontal velocityPlotted against the final angul@osition ofthe object (meart

was drawn from a range than guaranteed its path would int%r-

sect the arc of the hand.

The circuit architecturewas bilaterally symmetric, with
the samearchitecture as irthe previous experiments with
the addition of abilateral pair of arm angle sensdffer a

d., N = 150 trials). Note that the averagbehavior closely
pproximates the ideal (dashed gray line).

Also, note thatthere seems to be small but systematic
error in the final hand position. Thendtends toend a bit
too far to the left for objects that originate from the left and

total of 74 parameters).Eachsensor was sensitive to arm vice versa. In addition, although not shown in this figure, it

displacement ironedirection only, with an output of 0.1
when the arm was centered and an outpud.8fat theedges
of vision @&T1U8). Populations of 100ndividuals were
evolvedfor 1000 generationasing a mutatiorvariance o
of 0.1, acrossovelprobability of 0.5and anelitist fraction
of 5%.

The performance measure to be maximized was:

NumTrials

Z pI/NumTriaIs

_ max(%,|6?i |)
ma

where

p=1

and 8, is the angulaerror atthe end ofthe i trial. The
search begawith 5 initial trials. Everytime that the best
agent’'s average fithess exceeded 90%, 5 addittdad were
added until a total of 30 trials was reached.

Out of a total of 16 runs, producedagents thatchieved
an average performance greatean 90% on all 30 trials.

The best agenbhad amean fitness of 97.6% on the 30

evaluation trials and 95% on 10@8ndomtrials. As shown
in Figure 6, its accuracy is very good.

The behavior of the best agent catching objects at the

midline is shown in Figure 7. This agent oscillaitsshand
back and forth at one of differentlocationsbeforemoving
to the midline as the object nears. Note that Hhed can
slip from one location to another. Interestingly, thand
generally oscillates on the sarside ofthe agent as the ob-

turns out that the modlifficult objects forthis agent to
catcharethose that completely cross ffield of view (i.e.,
they originate at the extreme left but intersectdteof the
hand at the extreme right, or vice versa). The arm =ayle
sors play acrucial role inthis agent’s behavior. Ithese
sensors are lesioned, the amitially follows the samera-
jectories shown in Figure 7, but then swings out offigld
of view and neverreturns. In contrast, making theand
transparent hasnly a smalleffect onthe agent'sbehavior
(the two arm angldrajectory bundles oreach side of the

Angular Position

Figure 7: Arm angle trajectories over time of thbest
self/nonself discrimination agent catching objectsthet mid-
line from initial hand positions at either the left or righdge of
the visual field. The trajectories are shadedording to theni-
tial angular position of the object as indicated at the top of the

ject appears initially, repeatedly occluding the falling object.|ot.



agent mergénto one halfway betweerthem) and the per-

formance isalmost identical. This suggests that tgent
uses its armangle sensors to discount theesence of its
own hand inits field of view. Although thedetailed arm
trajectories of the othdpbp agentsaried agreat deal, they
all moved thehandbackandforth within thefield of view,

and they all exhibited a similar pattern sensitivity to arm

ters). The sensory neurons projected to bothirtte¥neurons
andthe motor neuronandthe interneuronsnd motor neu-
rons were fully interconnectedll proximity sensorsshared
a single gaimandbias, interneuronand motor neurorbiases
were in therange[-5,5], andmotor neuronsadgainsfixed
to 1. Gainswere clipped to be greatdran Oandtime con-
stants were clipped to ligeaterthan 1. Populations of 100

angle sensor lesions and insensitivity to hand transparencyindividualswere evolvedor 500 generations with muta-

5. Short-Term Memory

A minimally cognitive agent must bable to transcend its
immediate environment bwllowing past experiences to
influenceits future actionsindeed, it has beerarguedthat
only agents thatan coordinat¢heir behaviowith environ-
mental features that are not immediately present are
sufficiently “representation hungry” to be of cognitiiger-
est (Clark, 1997). In previous work, vesolvedagents that
could catchobjects falling verticallyafter only briefly ob-
serving their positionand then moving to thecorrect
location while blind to the object’'s subsequemttion (Gal-
lagher & Beer,1999). Here weprobe the strategies that
evolve for objects falling verticallygnd extendthis work to
objects exhibiting horizontal motion as well.

In our first set of short-term memory experimetgents
of diameter 30 had proximity sensors of maximum length
205 uniformly distributed over a visual anglett (Figure

tion varianceo® of 0.4, acrossovemprobability of Oand an
elitist fraction of 2%.
The performance measure to be maximized was:

NumTrials

200 - Z|di |/NumTriaIs
1=1

whered, is the final horizontal separatidretweenthe center
of the agent and the center of the object atetiiek ofthe i*"
trial. Twelve evaluation trialsvere used, evenlyspaced over
the range [0,55].

Out of a total of 5 runs, ajproducedagents thatchieved
an average performance greatean 97% on all 12 trials.
The best agent had a mean fithess of 99% on thevalda-
tion trials and 99.3% on 1000 random trials. The accuracy of
this agent in catching objects as a function of thenizon-
tal position is shown in Figure 9. Despite its blindness, the
agent'saccuracy isnearly perfect exceptor small errors

8). Their horizontal velocity was proportional to the sum ofround the midline and at the periphery of the visual field.

opposing forces produced by abilateral pair of effectors

The behavior othis agent is shown in Figurg0. This

(with a constant of proportionality of 5). Circular objects ofagent waits inplace until the objectintersects one of its
diameter 26 dropped from above with a vertical velocity of @utermost raysAfter a short delay, the agent begins to

and an initial horizontal offset af50. As soon as aagent
began to move, the input to all proximity sensors pes
manently set to 0, so that the agersishsequent behavior
could only depend onobservations of the objeatollected
before movement began.

The CTRNNarchitecturewas bilaterally symmetric, with
9 sensory neurons, 4 fulipterconnectednterneuronsaand 2
fully interconnected motor neurons (for a total of fiame-

- ——m—————
-
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Figure 8: Experimental setup foshort-term memorexperi-

ments. The agent can movehorizontally while objects fall
either vertically or diagonallyfrom above. The rays are dashed

because, as soon as the agent begins to move, it goes blind.

move in thedirection of the intersection with araverage
velocity designed to bring it to the object’s horizontal posi-
tion at the time the objeaktachesthe agent. Theagent's
motor response has two components: imitial transient
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Figure 9: Accuracy ofthe best short-term memory agent for
vertically falling objects.The final horizontal position of the
agent is plotted against the finabrizontal position of the
object. Note that the average performance closglgroximates
the ideal (dashed gray line) except at the midline and periphery.
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Figure 12: Behavior of the best short-term memory agent for
25 diagonally falling objects. (Left) Trajectories of motioalative
\ to the agent of objects falling diagonally withharizontal ve-
0 locity of 0.5 from several differerinitial horizontal positions
40 -20 0 20 20 are shown. (Right) Trajectories of motion relative to digent
] - of objects falling diagonallyfrom the midline with several dif-
Horizontal Position ferent horizontal velocities are shown.

Figure 10: Behavior of the best short-term memory agent forgenerated, temporally-extended responsthéoinitial pertur-
veraly faing objecs T1lecicries o moton el 5 MSbation of he object nersecting an outermost ay.

n . - . .
ﬁ(g)?izontal chffsetsare sghown. Gray trajectories are those for From Figures 8 and 1(.)’ .It Is clear that this §trategy begins
which the agent's strategy begins to break down. to breakdown neartthe midlineandnearthe periphery. An

object falling nearthe midline will notintersect theouter-
phase and a final constant phase. $teady-state horizontal most ray until it has nearly reachedthe agent, allowing
velocity achieved inthe constant phase wls53, which is insufficient time for the agent to responé&ortunately, ob-
very close to the required horizontal velocity predicted by thgcts falling near the midline require little movement to
vertical velocity of the object and the angle of the outermostatch. A sufficiently peripheral objeetill immediately in-
ray: 2/(tan %/12) = 0.54. The transient phaappears to be tersect the outermost ray, forcing the agent to treaualh
designed to correct for the fact that a fallcigele will inter-  cases identically. Three of the top five agents use a similar
sect the outermost ray not at the circle’s leadidge,but to  strategy, whereas the other two use different strategies.
one side. Thus, the object&ctual horizontalposition is In our secondset of short-term memory experiments, we
somewhat more centréhan the point of intersection with evolved agents thatcould catch diagonally-moving objects
the ray would indicate. Since the agent can no longer see tfiespite going blind during movement. Note that strategy
object once it begins to move, both the transamt steady- describedabove for vertical objectwill not work here be-
state velocity produced bythe agent is an internally- cause objects with different horizontal velocities can
intersect a peripheral ray #ie same timeand vertical dis-
R tance. The experimental setup for osecond set of
100 jitE® experiments was identical to that for the fiescept for the
! following differences.Objects now fell diagonallywith a
50 I horizontal velocity in theangex1l. The CTRNNarchitec-
I3 ture now has 6 interneurolff®r atotal of 82 parameters).
Experiments were now run for 5000 generations with a mu-
tation variances® of 0.5. The performance measukgas the
] same as for vertical objectsxceptthat a 20 pointpenalty
- 50 EE was assessed ifhe agent begamoving within the first 5
EEE time steps of the trial. Twenty-eight evaluation trialsre
-100 333t used, with the initial horizontal position in tihange[0,50]
: and the horizontal velocity in the rangjé.
100 <50 0 50100 Out of a total of 5 runs, groducedagents thatachieved
an average performance greatean 94% on all 28 trials.
The best agenhad amean fithess of 96.2% on the 28
Figure 11: Mean accuracy of théest short-termmemory evaluation tri.alsand 95.7% on ;OOQandomtrials. . The
agent for diagonally falling objectsThe final horizontal posi-  accuracy ofthis agent is shown in Figurkl. Despite the
tion of the agent is plotted against the finabrizontal horizontal motion of the objects and despite finet that the

position of the object (meax s.d.,N =200 trials).Notethat  agent goes blind when it moves, this agenjuge accurate

the average performance closely approximatesideal (dashed  gycept forsmall errors atthe midlineand periphery. Its be-
gray line).
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havior is shown in Figure 12.
time that the object loses contact with the outermagt
with an oscillating velocity that slowlgecays to aonstant
value. Generally speaking, the initial peaktlo¢ oscillation
varies systematicallyith the object’s horizontal velocity,

It begins to move about thbad areasonable chance of reachitite secondobject after

catching the first one.

The CTRNNarchitecturewas bilaterally symmetric, with
9 sensory neurons, 10 fulipterconnectednterneurons, and
2 fully interconnected motor neuroff®r a total of 146 pa-

with larger object velocitiesproducing larger peak agent rameters). The sensory neuropsojected to both the

velocities. Thiswould causethe agent to move greater
horizontal distance for objectsith largerhorizontalveloci-

interneurons and the motor neurarglthe interneurons and
motor neurons were fully interconnecteédl proximity sen-

ties. Thus, itappearghat thediagonal short-term memory sors shared asingle gainand bias, interneuronand motor

agents use a variation of the strategpployed bythe verti-
cal short-term memory agentsut with a morecomplex

neuron biasesvere inthe range[-5,5], and motor neurons
had gains fixed to 1. Gains were clipped togbeaterthan 0

transient structure to account for the horizontal velocities aind time constants were clipped to be greater than 1. Popula-

the objects. All of the top agents used a similar strategy.

6 . Selective Attention

tions of 100individualswere evolvedor 9000 generations,
with a mutation variance® of 1, a crossoveprobability of
0 and an elitist fraction of 2%.

A complex environment often contains many more objects The performance measure to be maximized was:

than an agent can simultaneously interact with. Tétsires
a minimally cognitive agent to be able to fodtss attention
on one object while ignoring otherdndeed, attentional
mechanismsare fundamentalcomponents of manyother
cognitive systems (Posner, 1995). In a final seexgeri-
ments, weevolved agents thatcould catchtwo objects
moving at different horizontal and vertical velocities.
Agents ofdiameter 3Chad 9proximity sensors omaxi-

NumTrials

200 - Zp,/NumTriaIs
1=1

wherep, = [d o] + [ .| andd;; andd, , arethe final horizontal
separations between the center of the agedthe center of
the first and second objects on therial.

The total number of trials grew from 1 to 35 in ttmurse

mum length 205 uniformly distributed over a visual angle oPf an evolution. A new trial waaddedeverytime the best
106 (Figure 13). Their horizontal velocity was proportionalPerformanceexceeded athreshold T or 600 generations
to the sum of opposing forces produced by a bilateral pair ®@ssed without the addition of a néwal. HereT = 198 —

effectors (with a constant of proportionality ®f. Two cir-

n/14 —gen2500,wheren is thecurrentnumber ofevalua-

cular objects of diameter 26 dropped from above. One of tHion trials andgenis thecurrent generatiomumber. These

objectshad avertical velocity in therange [3,4] and the
other had a vertical velocity in thange[1,2]. Thehorizon-
tal velocities of the objectsvere in the range +2. The
velocities and initial positions of the two objeetsre con-
strainedsuch that¥, - x| / |t; - t,] < 5a, wherex andt
representhe final horizontal positionandtimes of impact

trials were chosen tmclude asmany difficult cases as pos-
sible. Once the number of trials reached 3&w trialswere
generatedandomlyuntil one wasfound for which the cur-
rent best agergcoredlower than170. Thisnew trial then
replacedthe agent’scurrenthighest scoring trial of the 35.
This process continued until the search was terminated.

of the two objects, 5 is the maximum horizontal velocity of This is the most difficult problem that weave attempted

the agenanda = 0.7 waschosen to ensurthat theagent
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Figure 13:
periments. The agent can move horizontally while 2 objéalis
from above. Asdescribed in theext, theinitial positions and
velocities ofthe two objects are constrained so that thagent
has a reasonable chance of catching both.

Experimental setup foselective attention ex-

to date. First and foremost, the agent must someihvoid
being distracted byone object while it is orienting to an-
other. If it simply orients to the average position of the two
objects, it will miss both irgeneral. Second, which object
to attend to first is not always obvious from the outset be-
cause arobject that is initiallyfarther away carstill reach

the agent first if it is falling faster. We will call this the
passing object{PO) problem. Finally, in theourse of
catching one object, the other object can pass entirely out of
the agent’s field of view, raising abject permanenc€OP)
problem. Furthermore, thisan occur before a faster but
more distant object passes a closet slower oneforcing

the agent to choose which to purdssedonly on apredic-

tion of which object willreach it first. Thus, asuccessful
agent must bable to partiallydecoupleits behavior from

its immediate circumstancesghile still remaining sensitive

to them. It must also beapable ofmakingand remember-
ing predictions about the future configuration of objects
based on observations of their past motion.



-PO & -OP PO & -OP illustrated in Figure 14. In all cases, the agent triekegp
both objects in view as long as possible by makarge
sweeps back anfibrth. As objects fall, the ageswentually
tightens itsscan on the object iwvill catchfirst. Note that
the agent is vergecisive inall cases excephe PO& OP
case. Herethe objectsarefairly close togetheand on con-
verging paths, so they probably form one contiguohjsct
in the agent’s field of view. This seems to initiathpnfuse
the agent, since its tiglstcanonly slowly drifts toward the
closer object. The other twtop agentsproducedsimilar
behavior, but theyaried inthe specific pattern of scanning
they used and how fast they moved. Howedetailed analy-
ses of the strategies employed remain to be done.

Time

-PO & OP PO & OP

7 . Conclusion

In this paper, wénave extendedour previous work on the
evolution of minimally cognitive behavior to a significantly
wider range of tasks, including the perceptiorbodly-scaled
affordancesself/nonself discrimination, short-term memory
and selective attention. Our resultslemonstrate that
CTRNNSs can be evolvedor a wide range ofcognitively
interesting behaviousing a relatively simplevolutionary
algorithm. As we havattempted more difficultasks, shap-
Figure 14: Behavior of the best selectivattention agent. iNg by incrementallyadding new testcases asevolution
Example motion plotsare shown for differentcombinations of progresses has become an essential part of our methodology.
passing object¢PO) and object permanencgOP). In addition, |t is also interesting to note that active scanningfrés
an especially difficultPO&OP case, in which one objedisap- quently observed inthe successful agents that vimve

pears from view before the more distant but fagding object \ved (the short-t 5 fi
passes it, is shown &ottom. Eachplot shows thehorizontal ~ €vOIved (the short-term memory agengse anexception

positions of the two objects (straight black linesjdthe agent ~becausescanning is impossible in thaase). While we

(gray line) over time. The shadedegions correspond tposi-  believe that active perception is likely to be a comrfean

tihonsland tifmﬁs in }Nhlic?dthi faster-l;alling gircle (|i9|t:t gga}’) andtyre of distal sensing in situate@mbodied agents, it

the slower-falling circle (darker gray) can be seen byagent. ; ; ; ;

The dashed lines indicate the time at which the first ohjeetr- probably ar.lses in qur experlT(_erm? to the relatively
coarse spatial resolution of our “visual” sensors.

takes the second in passing objects cases. ' > 4
As we movetoward the evolution of increasinglynore

Out of a total of 7 runs, Producedagents thasscored cognitive behavior, the most interesting challengefage is
higher than 90% on 100@ndomtrials. The best agent had understandinghow the evolved CTRNNs work. While we
a mean performance of 94.2% on the random trials, with tHeavemadesubstantial progress on the analysisewblved
following breakdown:97.5% on trials involvingneither — neural circuits for sensorimotor contr@eer etal., 1999),
passing objects nor objegtermanenceg(227/1000 trials), the analysis ofevolved CTRNNs for moresophisticated
97.28% on trials involving only passingobjects behavior still poses a significant challenge. As internal state
(152/1000), 93.64% on trials involving only objeerma- ~Mediates between perception and action in increasmgtg
nence (329/1000), and 90.72% on trials involving both sophisticated ways, the agent’s behavior can bedneneas-
passing objectand object permanencg292/1000). Clearly, ingly decoupled from its immediate circumstances wéilé
trials involving objectpermanence werdifficult, and those ~ remaining sensitive to them. Given that there has been some
involving both objectpermanencandpassing objectsvere  skepticismregardinghow well intuitions grounded in the
even more difficult. Themost difficult cases ofall were dynamics of situated action will carry over to more cognitive
those in which one object disappeared fromfiblel of view  behavior (Clark, 1997), iwill be very interesting to see
beforethe more distant bufaster-falling objectpassed the how evolution shapes this interrdfnamics inorder to ac-
closerbut more slowly-falling object (Figure 14ottom). complish minimally cognitive tasks. For this reason, the
There were no such cases in the first 1000 random trials, affalysis ofevolved CTRNNs for minimally cognitive be-
only 8 such cases in 10,000 random trials. On thesasgs, havior is a major focus of ongoing work.
the best agent had a megerformance 079.8%. Theother
top agents exhibited a similar pattern of difficulty. Acknowledgments
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Most Difficult PO & OP
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in Methods above, the magnitude of p is drawnfrom a
normal distribution with 0 meaandvarianced?, while the
direction ofp is given by a unitvectoru uniformly distrib-
uted over the unit hypersphereS¥*. Becausethese two
distributions are independent:

E{lp} = E{In} E{u}

If m~ N(0, ¢, then
E{in =[x

In order to motivate our derivation Bf|u,|}, we will first
consider the special cadéds= 2 and\ = 3 beforemoving to
generalN. ForN = 2, we want the average magnitude of the
projection ofu onto x, (Figure Al, left). At any anglep
from x,, there are two unit vectors whose projection anto
is cos. If we sum up thenagnitudes of all sucprojec-

-x2
2
1 e20 d
o\2m
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Figure Al: ForN = 2 (left), there are two vectors at an angle
from X; whoseprojection ontox; is cos@. ForN = 3 (right),
there is a circle of vectors at an angbfrom X, whoseprojec-
tion ontoX, is cos@. The radius of this circle is si@.

N

Figure A2: Variation of E{|p|} with N for severaldifferent
values ofc®. Data fromour evolutionary algorithm isplotted

tions for the entire unitircle and divide bythe total“num- for the caser” = 1 (mean of 5000 trials)

ber” of vectors (given by thecircumference ofthe unit

circle), we obtain the desired average: whereA(N) is the “surface area” of the unit hypersphgté

N7T”

2
2[ 2cospdp o AN)=—F——
E{|u1} =—Jo - = r(Y +1)

. I andr is Euler's gamma function. Then we have that
Note that, inorder to account forthe contribution of the

vectorslying on the leftsemicircle (whose projections are r %)
—cos ¢), we have merelydoubledthe result for the right E{|U1} = TN
semicircle. N HF(T)

For N = 3, we find acircle of vectors at angle from x; ( )
whose projection onta; is cos@ (Figure Al, right). The Y 20 r
radius ofthis circle of vectors issin @ andthe number of 2"d thusE{|p1} {|ni E{ } m
such vectors is just the circumference of this circletorsih o ) 2 )
@. Thus, thedesiredaverage can be found summing up The varlatl_on o_E{|pi|} with N for re_presentatlve values of
the magnitudes of the projections of all swittles ofvec- 02 is shown in Figure A2, along wittiatafrom our evolu-
tors for the entireunit sphereand dividing by the total tionary algorithm for thecaseo® = 1, showing thatthis
“number” of vectorg(given by thesurface area ofhe unit ~ €XPression provides an accurate fit.

sphere): If £ is the linear map from search parametqs; in the
rangetl to a CTRNNparametec;, then theexpected mag-

ZI 27TS|n ¢os g §0 1 nitude of chang&{|Ac|} in ¢; would begiven by L(E{|pl}).

{|u1} 47T 2 For example, for a connection weight in thenge 5,

E{|Ac|} = 5 E{|p|}- Putting this all together, if a given ex-
For generaN, we will find an (N-2)-sphere of vectors at pected magnitude of chan@g|Ac|} is desired in &CTRNN

anglepfromx,, all of whose projections onto, arecos .  parameter;, then the mutation varianeg should be set as:
The radius of thisN-2)—sphere will be sipand thenumber
of such vectorsvill just be the“surface area” ofthis (N- 7'[['(N+1)D2
2)—sphere. The desired average can be founsiubyming up o’ EL ( |AC )T()E
the magnitudes of the projections of all subh2j—spheres
of vectors for the entire unit hypersph&® and dividing by
the total “number” of vectors (given by thsurface area” of

Of course, ingeneralthe desired expectedchangeand the

SH): linear mapwill be differentfor differentclasses of CTRNN
' 2 N2 parameters. In this case, some comprorhieveenthe dif-
E{| } ~ ZJO A(N-1) sin"?gpcosqd @ ferent required® must be selected.
: AIN)
_ 2A(N - 1) 1

AN) N-1



