Al Challenge 5: Ghostbusters

COSC4550/COSCH550
Artificial Intelligence
University of Wyoming

1 Overview

In this project, you will design Pacman agents that use sensors to locate and
eat invisible ghosts. You’ll advance from locating single, stationary ghosts to
hunting packs of multiple moving ghosts with ruthless efficiency.

Figure 1: The full Pacman game.

Acknowledgment: This assignment is based on the one created by Dan Klein
and John DeNero given as part of Berkeley’s CS188 course. This assignment
was also inspired by the modifications made by Peter Stone in his CS343 course
of 2012. We thank Dan and John for creating the assignment and granting
the permission to use it and we thank Peter for the ideas on how to adapt the
assignment for this course.

1.1 Chapters

Chapters are from the book ‘Artificial Intelligence, A Modern Approach’, third
edition, by Stuart Russel and Peter Norvig. The relevant chapter for this chal-
lenge is chapter 15, sections 1, 2, and 5. The most relevant sub-sections are
15.1.2 (Transition and senor models), 15.2.1 (Explains filtering for exact infer-
ence), and 15.5.3 (Explains particle filtering). Chapters 13 and 14 may help in
understanding the material presented in chapter 15.

1.2 Program files

The archive for this challenge contains a number of Python files. These files
have been tested on, and should work with, Python version 2.7.3 and Python
version 2.6.6. More recent versions of Python 2.x probably work as well, but
these files do not work with Python 3.x.

The code base is once again very similar to previous challenges, and it is still
unwise to intermingle these files with the files from previous challenges. The
important files for this challenge are:

student_inference.py This file should be extended with your implementation
of the various inference algorithms, and your greedy
buster agent.
busters.py The main entry to Ghostbusters (replacing pacman.py)
game.py The logic behind how the Pacman world works. This
file describes several supporting types like AgentState,
Agent, Direction, and Grid.
util.py Utility functions.
autograder.py Use the autograder to check the correctness of your so-
lutions.

While working with the autograder, it will be helpful to have some understand-
ing of what the autograder is doing. There are 2 types of tests in this project, as
differentiated by their *.test files found in the subdirectories of the test cases
folder. For tests of class DoubleInferenceAgentTest, you will see visualizations of
the inference distributions generated by your code, but all Pacman actions will
be preselected by the autograder. This is necessary in order to allow comparison
of your distributions for grading. The second type of test is GameScoreTest, in
which your BustersAgent will actually select actions for Pacman and you will
watch your Pacman play and win games.

As you implement and debug your code, you may find it useful to run a single
test at a time. In order to do this you will need to use the -t flag with the
autograder. For example if you only want to run the first test of question 1-a,
use:

python autograder.py -t test_cases/qla/l-ExactObserve

In general, all test cases can be found inside test cases/q*. To speed up some
of the tests you can use the option --no-graphics to run the test without
graphics.

1.3 Deliverables

For this challenge you should submit your versions of student inference.py.
Please rename this file to [fyourname/ inference.py before submitting it.

Important: Make absolutely sure that your implementation will run all ques-
tions without any modifications being necessary on our part. It should run on
either python 2.7.3 or python 2.6.6 and when in doubt you can always test your
implementation on hive. You will only receive partial credit for implementations
that do not run.

2 Questions

The goal of this game is to hunt down scared but invisible ghosts. Pacman, ever
resourceful, is equipped with sonar (ears) that provides noisy readings of the
Manhattan distance to each ghost. The game ends when pacman has eaten all
the ghosts. To start, try playing a game yourself using the keyboard.

python busters.py

The blocks of color indicate where each ghost could possibly be, given the noisy
distance readings provided to Pacman. The noisy distances at the bottom of
the display are always non-negative, and always within 7 of the true distance.
The probability of a distance reading decreases exponentially with its difference
from the true distance.

Your primary task in this project is to implement inference to track the ghosts.
A crude form of inference is implemented for you by default: all squares in which
a ghost could possibly be are shaded by the color of the ghost. Option -s shows
where the ghost actually is.

python busters.py -s -k 1

2.1 Question 1-a (3 points): Exact Inference Observation

Naturally, we want a better estimate of the ghost’s position. In this question,
you will update the agent’s beliefs according to the data from his sensor. Note
that you do not have to handle the transition model yet, the transition model
will be handled in question 1-b.

For this question you’ll have to update the observe method in EzactInference
class of student_inference.py to correctly update the agent’s belief distribution
over ghost positions given an observation from Pacman’s sensors. A correct
implementation should also handle one special case: when a ghost is eaten, you
should update the beliefs of the agent to belief that, with certainty, the ghost is
now in its prison. See the comments in observe for how to do this.

To run the autograder for this question and visualize the output:
python autograder.py -q qla

As you watch the test cases, be sure that you understand how the squares con-
verge to their final coloring. In test cases where Pacman is boxed in (which is to
say, he is unable to change his observation point), why does Pacman sometimes
have trouble finding the exact location of the ghost?

2.1.1 Hints and Observations

e Figuring out what to write is the challenge of this question, but once you
have the answer your code should be very short.

e Before typing any code, write down the equation of the inference problem
you are trying to solve.

e Try printing noisyDistance, observationDistribution, and pacmanPosition
(in the observe function) to get started.

e The effect of the observe function should be to update the self.beliefs
field of the inference module. This field is a util. Counter object (like a
dictionary) that holds the agents current beliefs about the world (e. g.
Xy).

e Before any readings, Pacman believes the ghost could be anywhere: a
uniform prior (see initializeUniformly).

e In the Pacman display, high posterior beliefs are represented by bright col-
ors, while low beliefs are represented by dim colors. You should start with
a large cloud of belief that shrinks over time as more evidence accumulates.

e Note that, while there is no transition model for this question, the agents
new beliefs still depend on his current beliefs.

e An important function is:
busters.getObservationDistribution(noisyDistance)

This function returns a map between true distances and their likelihood
given the provided noisy distance, which can be used to obtain all prob-
abilities in the form of P(noisyDistance|trueDistance). In general this
function describes the complete sensor model P(FE;|X;). See the comments
in the observe function for suggestions on how to handle this data.

e Your busters agents have a separate inference module for each ghost they
are tracking. That’s why if you print an observation inside the observe
function, you’ll only see a single number even though there may be mul-
tiple ghosts on the board.

2.1.2 Grading: 3 points

To get full credit your implementation has to be correct and pass all tests
of question 1-a on the autograder. Note that the autograder does not only
check if your algorithm is correct, it will also time your algorithm, and your
implementation may not take more than 5 minutes to answer a question or a
time-out exception will be thrown. If your algorithm fails on one or more tests
you’ll get partial credit depending on the number of tests you passed.

2.2 Question 1-b (4 points): Inference over time

In the previous question you implemented belief updates for Pacman based on
his observations. Fortunately, Pacman’s observations are not his only source of
knowledge about where a ghost may be. Pacman also has knowledge about the
ways that a ghost may move; namely that the ghost can not move through a
wall or more than one space in one timestep.

In this question you will update Pacman’s beliefs based on the transition model.
You will have to implement this in the elapseTime method in ExactInference.
Your agent has access to the action distribution for any GhostAgent (see the
Hints and Observations section and the comments in the code for how to access
this distribution).

To run the autograder for question 1-b only:
python autograder.py -q qlb

Note that, in this case, Pacman is not utilizing his observations about the ghost.
Therefore Pacman will start with a uniform distribution over all spaces, and
then update his beliefs according to how he knows the Ghost is able to move.
Since Pacman is not observing the ghost, this means the ghost’s actions will not
impact Pacman’s beliefs. Over time, Pacman’s beliefs will come to reflect places
on the board where he believes ghosts are most likely to be given the geometry of
the board and what Pacman already knows about their valid movements.

2.2.1 Hints and Observations

e For the tests in this question we will sometimes use a ghost with random
movements and other times we will use the GoSouthGhost. This ghost
tends to move south so over time, and without any observations, Pacman’s

belief distribution should begin to focus around the bottom of the board.
To see which ghost is used for each test case you can look in the .test files.

e We assume that ghosts move independently of one another, so while you
can develop all of your code for one ghost at a time, adding multiple ghosts
should still work correctly.

e An important combination of functions is:
self.getPositionDistribution(self.setGhostPosition(gameState, oldPos))

This will return the position distribution of an agent given his previ-
ous position oldPos. That is, these functions return a map containing
P(newPos|oldPos) for each possible new position and in general these
functions describe the complete transition model P(X:|X;_1). See the
comments in the elapseTime function for hints on how to use this distri-
bution.

2.2.2 Grading: 4 points

To get full credit your implementation has to be correct and pass all tests of
question 1-b on the autograder. If your algorithm fails on one or more tests
you’ll get partial credit depending on the number of tests you passed.

2.3 Question 1-c (4 points)

Now that Pacman knows how to use both his prior knowledge and his observa-
tions when figuring out where a ghost is, he is ready to hunt down ghosts on
his own. This question will use your observe and elapseTime implementations
together, along with a simple greedy hunting strategy which you will implement
for this question. In the simple greedy strategy, Pacman assumes that each
ghost is in its most likely position according to its beliefs, then moves toward
the closest ghost. Up to this point, Pacman has moved by randomly selecting a
valid action.

Implement the chooseAction method in GreedyBustersAgent in student _inference.py.
Your agent should first find the most likely position of each remaining (uncap-
tured) ghost, then choose an action that minimizes the distance to the clos-

est ghost. If correctly implemented, your agent should win the game in ¢3/3-
gameScoreTest with a score greater than 700 at least 8 out of 10 times. Note:

the autograder will also check the correctness of your inference directly, but the
outcome of games is a reasonable sanity check.

To run the autograder for this question and visualize the output:

python autograder.py -q qlc

Note: when you run with graphics you will almost certainly run into a time-
out exception in the 3-gameScoreTest.test. This is just because of the slow
graphics, run with --no-graphics to pass this final test.

2.3.1 Hints and Observations

e Because this question depends on your Exact Inference working correctly,
the autograder will start testing your Exact Inference first. Remember
that you can use:
python autograder.py -t test_cases/qlc/3-gameScoreTest
to skip the Exact Inference tests, and immediately start testing your
greedy agent.

e When correctly implemented, your agent will thrash around a bit in order
to capture a ghost.

e The comments of chooseAction provide you with useful method calls for
computing maze distance and successor positions.

e Make sure to only consider the living ghosts, as described in the comments.

2.3.2 Grading: 4 points

To get full credit your implementation has to be correct and pass all tests of
question 1c on the autograder. If your algorithm fails on one or more tests you’ll
get partial credit depending on how many tests you passed.

2.4 Question 2-a (5 points): Approximate Inference

Approximate inference is very trendy among ghost hunters this season. Next,
you will implement a particle filtering algorithm for tracking a single ghost.
Note that, once again, this question will not use the transition model yet, the
transition model will be handled in question 2-b.

Implement the functions initialize Uniformly, getBeliefDistribution, and observe
for the ParticleFilter class in student inference.py. initialize Uniformly should
initialize a uniform, but not random, distribution of samples. getBeliefDistribu-
tion should use the current samples to calculate and return a belief distribution
similar to the one used in question 1. observe should produce a new set of
samples based on the old set of samples and the current observation.

A correct implementation should also handle two special cases. (1) When all
your particles receive zero weight based on the evidence, you should re-sample
all particles from the prior to recover. (2) When a ghost is eaten, you should
update all particles such that the agent will believe that the ghost is in its prison
cell, as described in the comments of observe.

To run the autograder for this question and visualize the output:

python autograder.py -q g2a

2.4.1 Hints and Observations

e A particle (sample) is a ghost position in this inference problem.

e The belief cloud generated by a particle filter will look noisy compared to
the one for exact inference.

2.4.2 Grading: 5 points

To get full credit your implementation has to be correct and pass all tests of
question 2-a on the autograder. If your algorithm fails on one or more tests
you’ll get partial credit depending on the number of tests you passed.

2.5 Question 2-b (4 points): Approximate Inference with Time
Elapse

Implement the elapse Time function for the ParticleFilter class in student inference.py.
This function should create a new sample based on the old sample and Pacman’s
knowledge on how Ghosts move. When complete, you should be able to track
ghosts nearly as effectively as with exact inference.

Note that in this question, we will test both the elapseTime function in isolation,
as well as the full implementation of the particle filter combining elapseTime
and observe.

To run the autograder for this question and visualize the output:

python autograder.py -q q2b

2.5.1 Hints and Observations

e For the tests in this question we will sometimes use a ghost with random
movements and other times we will use the GoSouthGhost. This ghost
tends to move south so over time, and without any observations, Pacman’s
belief distribution should begin to focus around the bottom of the board.
To see which ghost is used for each test case you can look in the .test files.
As an example, you can run the command below and observe that the
distribution becomes concentrated at the bottom of the board.

python autograder.py -t test_cases/q2b/2-ParticleElapse

e If you have implemented all functions correctly you should now be able
to test your agents in the following games. Use this command to run the
game interactively:

python busters.py -k 1 -s -a inference=ParticleFilter

Or use this command to let the greedy buster agent play the game:

python busters.py -p GreedyBustersAgent -1 oneHunt -k 1 -n 10 -s -a inference=ParticleFilter

2.5.2 Grading: 4 points

To get full credit your implementation has to be correct and pass all tests of
question 2-b on the autograder. If your algorithm fails on one or more tests
you’ll get partial credit depending on the number of tests you passed.

2.6 Question 3-a (COSC5550 5 pts., COSC4550 2 pts. bonus):
Joint Particle Filter Observation

(For those enrolled in the graduate student version of the class only. Bonus
points for undergraduates)

So far, we have tracked each ghost independently, which works fine for the
default RandomGhost or more advanced Directional Ghost. However, the prized
DispersingGhost chooses actions that avoid other ghosts. Since the ghosts’
transition models are no longer independent, all ghosts must be tracked jointly
in a dynamic Bayes net!

The Bayes net has the following structure, where the hidden variables G repre-
sent ghost positions and the emission variables E are the noisy distances to each
ghost. This structure can be extended to more ghosts, but only two (a and b)
are shown below.

t=1

Gy k-~ ---->

Figure 2: The Dynamic Bayesian Network for the Joint Particle Filter

You will now implement a particle filter that tracks multiple ghosts simultane-
ously. Each particle will represent a tuple of ghost positions that is a sample
of where all the ghosts are at the present time. The code is already set up

Ne

to extract marginal distributions about each ghost from the joint inference al-
gorithm you will create, so that belief clouds about individual ghosts can be
displayed.

Once again, this question will only handle the sensor model, question 3-b will
handle the transition model. Complete the initialize Particles, getBeliefDistribu-
tion, and observeState methods in JointParticleFilter to weight and re-sample
the whole list of particles based on new evidence. These functions should work
the same as the functions in question 2-a except that they should now work on
samples that are tuples instead of singles.

As before, a correct implementation should also handle two special cases. (1)
When all your particles receive zero weight based on the evidence, you should
re-sample all particles from the prior to recover. (2) When a ghost is eaten, you
should update all particles to place that ghost in its prison cell, as described in
the comments of observeState.

You should now effectively track dispersing ghosts. To run the autograder for
this question and visualize the output:

python autograder.py -q q3a

2.6.1 Grading: 5 points

To get full credit your implementation has to be correct and pass all tests of
question 3-a on the autograder. If your algorithm fails on one or more tests
you’ll get partial credit depending on the number of tests you passed. If you are
enrolled in the undergraduate version of this course your implementation needs
to pass all tests of question 3-a on the autograder to get the 2 point bonus,
partial bonus is not awarded.

2.7 Question 3-b (COSC5550 3 pts., COSC4550 1 pt. bonus):
Joint Particle Filter with Elapse Time

(For those enrolled in the graduate student version of the class only. Bonus
points for undergraduates)

Complete the elapse Time method in JointParticleFilter in student_inference.py
to re-sample each particle correctly from the Bayes net. In particular, each
ghost should draw a new position conditioned on the positions of all the ghosts
at the previous time step. The comments in the method provide instructions
for support functions to help with sampling and creating the correct distribu-
tion.

To run the autograder for this question use:

python autograder.py -q qg3b

10

2.7.1 Hints and Observations

e The ¢3b/1-JointParticleElapse and ¢q3b/2-JointParticleElapse tests check
only your elapse Time implementations while the ¢3b/3-JointParticleElapse
tests both your elapseTime and observe implementations.

e Since these questions involve joint distributions, they require more com-
putational power (and time) to grade, so please be patient!

2.7.2 Grading: 3 points

To get full credit your implementation has to be correct and pass all tests of
question 3-b on the autograder. If your algorithm fails on one or more tests
you’ll get partial credit depending on the number of tests you passed. If you are
enrolled in the undergraduate version of this course your implementation needs
to pass all tests of question 3-b on the autograder to get the 1 point bonus,
partial bonus is not awarded.

3 FAQ

Q: For exact inference, what should the new believes look like after Pacman
ate a ghost?

A: The new believes should have a 1.0 (100%) at the jail position, and 0
everywhere else; we are certain the ghost is in jail.

: My code runs extremely slow with the autograder, what is wrong?

O

A: First, make sure you use the --no-graphics command. Second, check
your code for slow operations, especially for operations that get slower
over time. For example, make sure that the self.particles list does not
increase in size over time.

11

