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mid-project check-in due Friday!



unsupervised learning



learn underlying patterns in data
without any labeled training data (or rewards)

this is the hardest type of machine learning
(learning from the least information)

yet it might be the most important
(data streams without labels or rewards
make up the majority of data in the world)



as this problem is so broad and unstructured,
there are lots of approaches to unsupervised learning
(often with different types of patterns we're trying to learn)



autoencoders



autoencoders seek to create a compressed
(i.e. lower-dimensional) model of in input

they do so by trying to re-construct that input through
a representation that includes a bottleneck layer

Compressed Data

Encode Decode



since the output layer is the same size as the input layer,
the error is simply the difference between the two

this means networks do not need any supervised labels,
as the error signals come from reconstruction errors

Compressed Data

Encode Decode



since the code layer is smaller than than the input/output
(here 2-dimensional instead of 4-D), the autoencoder must
learn an compressed (2-D) representation of the data,
and it must capture (most of) the important features in the
full (4-D) input to be able to reconstruct it!

Compressed Data

Encode Decode



this dimensionality reduction can lead to
certain attributes of the image to be ignored
(or all to be learned more succinctly... or just worse)
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as noise is difficult to represent
(e.g. requires a powerful representation to overfit to noise)
autoencoders are often used for “denoising” data




what if we used convolutional layers to build
our neural network autoencoder?

convolution progresses just like image classification
with deep neural networks did
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but now we use “decovolution” to take an input and filter
and apply it repeatedly over the image, to upscale it

by connecting these two pieces into one big neural network,
we can then use backpropogation end-to-end
to train both the deconvolutional and convolutional layers
from the image reconstruction error

Convolution step (convolution + pooling) Fully connected encoding step Deconvolution step (deconvolution + unpooling)




this creates a much sparser representation
of a high-dimensional inputs (e.g. image)
by the activation of the smallest hidden layer
(i.e. the code layer)

Convolution step (convolution + pooling) Fully connecteq encoding step Deconvolution step (deconvolution + unpooling)




this idea of reconstructing an image can also be extended
to construct an image from different part of two inputs

Content Image
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this idea of reconstructing an image can also be extended
to construct an image from different part of two inputs

e.g. taking the content from one, and style from the other

side note:

Content Image

style loss is
calculated based on
spacial correlations
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this creates a constructed image with the style of one
input image, and the content of the other input image!

content image style image

total loss

WGGE Network i l

generated image







Content: Neckarfront in Tubingen, Germany Style: The Shipwreck of the Minotaur, JMW Turner

Style: The Starry Night, Yincent van Gogh Style: Der Schrei, Edvard Munch










generative adversarial networks



this approach is related to autoencoders and the methods
that we've studies on deep networks for image classification

this unsupervised learning method that seeks to model
the process that created your current data distribution

by modeling the generating process, there is
an implicit assumption that you understand
the underlying trends and behavior of the data,
but creating new instances of patterns can also be
important for applications (e.g. drug discovery)



to accomplish this without labeled training data,

we actually train two networks

the first network generates a new data point (e.g. image)
that it tries to make as similar to the training data as possible

(e.g. set of unlabeled images)

the second network is then given the real training data
as well as the new (fake/generated) data points

from t

he generator network, and tries to classify

whic

1 data points are real and which ones are

from the training set an which ones are generated



What are GANSs?

First, an intuition
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What are GANSs?

First, an intuition
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let's consider a 1-D example, where the generator
is trying to estimate the distribution of a single value

 true distribution (of training data):
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Probability density
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by the end of training, the generator network is able to
(almost pertectly) replicate the distribution from the original
training example set that was given to the discriminator
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we almost perfect learned a model of the example
data points with no labeling or rewards! this is super cool!

what if we used deep convolutional neural networks
as our generator and discriminator,
and used images as our example dataset?



discriminator networks are just like the deep convolutional
neural networks we've seen for image classification before

but generator networks are now “decovnolutional” deep
neural networks, that go from an vector to an image
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by connecting these two together
(where the output layer of the generator
is the input layer to the discriminator),
we can take the classification error of the discriminator
and backpropagate it all the way through both networks
(opposite to autoencoders) with end-to-end training!

T = G(z,0(t))

.................
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Generator Network A Discriminator Network
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InfoGAN

olutional GAN - Xi Chen et al. (2016)

Deep Conv

W g O o of
W gl O g of
W g T g of
Wl T ol
Wog T
W o
WS
Wea Ll

.ﬁ.ﬂ.&zﬂﬁ
TRl @
e ¥ Al
—TUH'ad
T g

(b) Width

(a) Rotation

ial nets.” Advances in Neural Information

ing by information maximizing gener ative adversar
Processing Systems. 2016.

representation learn

al. "Infogan: Interpretable

:Chen, Xi, et

Source



DCGAN - Vector Arithmetic

Deep Convolutional GAN - Alec Radford et al. (2016)
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Source: Radford, Alec, Luke Metz, and Soumith Chintala. "Unsupervised representation learning with deep convolutional generative adversarial networks.” arXiv
preprint arXiv:1511.06434 (2015).



Generative Visual Manipulation
on the Natural Image Manifold
Jun-Yan Zhu
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