

Introduction to Artificial Intelligence
COSC 4550 / COSC 5550

Professor Cheney
10/6/17

z
k

the variance of our new estimate is less than
either our predicted state or our measurement

(combining two estimates gives us more certainty!)

this is a property of multiplying Gaussian distribution
(variance often grows when multiplying other distributions)

super cool/important!

one of the simplifying assumption we made
(that helped the Gaussian function to behave nicely)

is that our transition model was linear

(X
t+Δ

 = X
t
 + X' * Δ)

s
t

s
t+1

T

“extended Kalman filter”

this is great whenever your
function is smooth/differentiable

but sometimes it's not...

let's sample points
from our distribution

then fit a new Gaussian to
those points after they go

through our non-linear
transformation

“particle filter”

Kalman filters and HMMs are subsets
of dynamic Bayesian networks (DBN)

but not all DBNs can be represented as
a Kalman filter… e.g bifurcation events

reinforcement learning!

Part I: Artificial Intelligence
- Introduction
- Intelligent Agents

Part II: Problem Solving
- Search
- Optimization
- Games

Part III: Knowledge, Reasoning, & Planning
Part IV: Uncertainty and Reasoning

- Probability
- Bayesian Statistics
- Markov Models

Part V: Learning
- Unsupervised Learning
- Supervised Learning
- Reinforcement Learning

Part VI: Communicating, Perceiving, & Acting
- Natural Language Processing
- Object Recognition
- Robotics

what are agents?
why would they need to do search?

how do we even do search?
what's the best way to do it?

if we know things about the
problem already, can we tell
them to the agent, instead of
making it learn them?

what additional tricks/techniques do
we need to be able to apply these
ideas to a variety of applications?

what if we have a simple setting, where
we perfectly know the rules (i.e. model)?

if we're not sure of the model, but have a guess at
how it should work, how can we update our causal
understanding when new information comes?

what if we have no idea (or prior assumptions)
about how the world works – can we get the
agent to learn correlations from the ground up?

optimal decision making
in sequential decision making tasks

“classical conditioning”

“operant conditioning”

“operant conditioning”

basic idea:

optimize a behavioral policy,
such that the agent learns to

recognize states that is has been in
before, and reproduce the actions
that have led to positive rewards
in that state in past experiences

what caused the shock?

“credit assignment problem”

 state (s)
 action (a)

reward (R(s))

policy (π: s→a)

policy is optimized to maximize cumulative reward
(V for “value” or U for “utility”)

V = Σ
t=0:∞

 R(s
t
)

state
i
 → action

i
 → reward

i
 → state

i+1

value iteration

so far this semester, you've given an agent its value function

e.g.
straight-line distance heuristic in map search

manhattan distance heuristic in pacman
corners heuristic in pacman

actual A* # of moves left in pacman

we (humans) can design these (heuristic) value functions
because we intuitive know how the problem works

and what sort of strategies we might useful to solve it

an artificial agent has no intuition,
it has to build up its knowledge of what

states are good or bad through experience
(i.e. iteratively) as it interacts with the world

(through some behavioral policy)

GOAL!

GOAL!

grid world:

each timestep has -1 reward

the game terminates when
you reach a goal state

actions: N, S, E, W

intuitive description: “get to the goal as soon as possible”
(but let's pretend we're a robot, who doesn't know this!)

each value function (V) is defined
with respect to some behavioral policy (π)

Vπ

 let's iteratively find Vπ for a random policy
in our mini grid world

0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0

current value (V
k
) for a random policy

k=0
“who knows?”

k=1

0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0

current value (V
k
) for a random policy

k=0
“who knows?”

k=1

?

0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0

current value (V
k
) for a random policy

k=0
“who knows?”

k=1

-1.0

N: V
s,N

 = -1 + 0 = -1
S: V

s,S
 = -1 + 0 = -1

E: V
s,E

 = -1 + 0 = -1
W: V

s,W
 = -1 + 0 = -1

with a random policy,
we are equally likely to take any move,

so:

V
s
= (-1 + -1 + -1 + -1)/4 = -1

immediate
reward

current
prediction

for
cumulative
reward in
new state

0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0

current value (V
k
) for a random policy

k=0
“who knows?”

k=1

?

0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0

current value (V
k
) for a random policy

k=0
“who knows?”

k=1

-1.0

0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0

current value (V
k
) for a random policy

k=0
“who knows?”

k=1

0.0 -1.0 -1.0 -1.0

-1.0 -1.0 -1.0 -1.0

-1.0 -1.0 -1.0 -1.0

-1.0 -1.0 -1.0 0.0

 next iteration…
new value function

becomes
old value function

(“current prediction
for cumulative reward”)

current value (V
k
) for a random policy

k=1

0.0 -1.0 -1.0 -1.0

-1.0 -1.0 -1.0 -1.0

-1.0 -1.0 -1.0 -1.0

-1.0 -1.0 -1.0 0.0

k=2

current value (V
k
) for a random policy

k=1

0.0 -1.0 -1.0 -1.0

-1.0 -1.0 -1.0 -1.0

-1.0 -1.0 -1.0 -1.0

-1.0 -1.0 -1.0 0.0

k=2

-1.75

N: V
s,N

 = -1 + -1 = -2
S: V

s,S
 = -1 + -1 = -2

E: V
s,E

 = -1 + 0 = -1
W: V

s,W
 = -1 + -1 = -2

V
s
= (-2 + -2 + -1 + -2)/4 = -1.75

current value (V
k
) for a random policy

k=1

0.0 -1.0 -1.0 -1.0

-1.0 -1.0 -1.0 -1.0

-1.0 -1.0 -1.0 -1.0

-1.0 -1.0 -1.0 0.0

k=2

0.0 -1.75 -2.0 -2.0

-1.75 -2.0 -2.0 -2.0

-2.0 -2.0 -2.0 -1.75

-2.0 -2.0 -1.75 0.0

current value (V
k
) for a random policy

k=3

0.0 -1.75 -2.0 -2.0

-1.75 -2.0 -2.0 -2.0

-2.0 -2.0 -2.0 -1.75

-2.0 -2.0 -1.75 0.0

k=2

0.0 -2.4 -2.9 -3.0

-2.4 -2.9 -3.0 -2.9

-2.9 -3.0 -2.9 -2.4

-3.0 -2.9 -2.4 0.0

current value (V
k
) for a random policy

k=∞

0.0 -6.1 -8.4 -9.0

-6.1 -7.7 -8.4 -8.4

-8.4 -8.4 -7.7 -6.1

-9.0 -8.4 -6.1 0.0

k=10

0.0 -14 -20 -22

-14 -18 -20 -20

-20 -20 -18 -14

-22 -20 -14 0.0

converged to true
value function

(Vπ-random)

let's use our value function to produce a
(greedily) optimal policy!

0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0

current value (V
k
) for a random policy

k=0
“who knows?”

k=1

0.0 -1.0 -1.0 -1.0

-1.0 -1.0 -1.0 -1.0

-1.0 -1.0 -1.0 -1.0

-1.0 -1.0 -1.0 0.0

greedy policy (π
k
) for a this value function

current value (V
k
) for a random policy

k=1

0.0 -1.0 -1.0 -1.0

-1.0 -1.0 -1.0 -1.0

-1.0 -1.0 -1.0 -1.0

-1.0 -1.0 -1.0 0.0

k=2

0.0 -1.75 -2.0 -2.0

-1.75 -2.0 -2.0 -2.0

-2.0 -2.0 -2.0 -1.75

-2.0 -2.0 -1.75 0.0

greedy policy (π
k
) for a this value function

current value (V
k
) for a random policy

k=3

0.0 -1.75 -2.0 -2.0

-1.75 -2.0 -2.0 -2.0

-2.0 -2.0 -2.0 -1.75

-2.0 -2.0 -1.75 0.0

k=2

0.0 -2.4 -2.9 -3.0

-2.4 -2.9 -3.0 -2.9

-2.9 -3.0 -2.9 -2.4

-3.0 -2.9 -2.4 0.0

greedy policy (π
k
) for a this value function

current value (V
k
) for a random policy

k=∞

0.0 -6.1 -8.4 -9.0

-6.1 -7.7 -8.4 -8.4

-8.4 -8.4 -7.7 -6.1

-9.0 -8.4 -6.1 0.0

k=10

0.0 -14 -20 -22

-14 -18 -20 -20

-20 -20 -18 -14

-22 -20 -14 0.0

greedy policy (π
k
) for a this value function

the greedy policy converges faster than the value function!

(all we need to find the best policy for a value function is
the correct ordering of states and not their exact values)

in this case, the policy was converged by k=3

current value (V
k
) for a random policy

k=∞

0.0 -14 -20 -22

-14 -18 -20 -20

-20 -20 -18 -14

-22 -20 -14 0.0

greedy policy (π
k
) for a this value function

k=3

0.0 -2.4 -2.9 -3.0

-2.4 -2.9 -3.0 -2.9

-2.9 -3.0 -2.9 -2.4

-3.0 -2.9 -2.4 0.0

what could we do to improve this even further?

now that we have a better (non-random) policy,
let's use our current (greedy) policy to choose our
action weighting iterate through the value function

“on-policy learning”

optimal value function!

optimal policy!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50

