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the variance of our new estimate is less than
either our predicted state or our measurement

(combining two estimates gives us more certainty!)

this is a property of multiplying Gaussian distribution
(variance often grows when multiplying other distributions)

super cool/important!



  



  

one of the simplifying assumption we made
(that helped the Gaussian function to behave nicely)

is that our transition model was linear

( X
t+Δ

 = X
t
 + X' * Δ )
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“extended Kalman filter”



  

this is great whenever your
function is smooth/differentiable

but sometimes it's not...



  



  

let's sample points 
from our distribution



  

then fit a new Gaussian to 
those points after they go 

through our non-linear 
transformation 

“particle filter”



  

Kalman filters and HMMs are subsets
of dynamic Bayesian networks (DBN)

but not all DBNs can be represented as
a Kalman filter… e.g bifurcation events 



  



  

reinforcement learning!



  

Part I: Artificial Intelligence
- Introduction
- Intelligent Agents

Part II: Problem Solving
- Search
- Optimization
- Games

Part III: Knowledge, Reasoning, & Planning
Part IV: Uncertainty and Reasoning

- Probability
- Bayesian Statistics
- Markov Models

Part V: Learning
- Unsupervised Learning
- Supervised Learning
- Reinforcement Learning

Part VI: Communicating, Perceiving, & Acting 
- Natural Language Processing
- Object Recognition
- Robotics 

what are agents?
why would they need to do search?

how do we even do search?
what's the best way to do it?

if we know things about the 
problem already, can we tell 
them to the agent, instead of 
making it learn them?

what additional tricks/techniques do 
we need to be able to apply these 
ideas to a variety of applications? 

what if we have a simple setting, where 
we perfectly know the rules (i.e. model)?

if we're not sure of the model, but have a guess at 
how it should work, how can we update our causal 
understanding when new information comes?

what if we have no idea (or prior assumptions) 
about how the world works – can we get the 
agent to learn correlations from the ground up? 



  

optimal decision making
in sequential decision making tasks



  

“classical conditioning”



  

“operant conditioning”



  

“operant conditioning”



  

basic idea:

optimize a behavioral policy,
such that the agent learns to 

recognize states that is has been in 
before, and reproduce the actions 
that have led to positive rewards 
in that state in past experiences



  

what caused the shock?

“credit assignment problem”



  

   state (s)
  action (a) 

reward (R(s))

policy ( π: s→a )

policy is optimized to maximize cumulative reward
(V for “value” or U for “utility”)

V = Σ
t=0:∞

 R(s
t
)

state
i
 → action

i
 → reward

i
 → state

i+1



  

value iteration



  

so far this semester, you've given an agent its value function

e.g.
straight-line distance heuristic in map search

manhattan distance heuristic in pacman
corners heuristic in pacman

actual A* # of moves left in pacman

we (humans) can design these (heuristic) value functions
because we intuitive know how the problem works

and what sort of strategies we might useful to solve it



  

an artificial agent has no intuition,
it has to build up its knowledge of what

states are good or bad through experience
(i.e. iteratively) as it interacts with the world

(through some behavioral policy) 



  

GOAL!

GOAL!

grid world:

each timestep has -1 reward

the game terminates when
you reach a goal state

actions: N, S, E, W

intuitive description: “get to the goal as soon as possible”
(but let's pretend we're a robot, who doesn't know this!)



  

each value function (V) is defined
with respect to some behavioral policy (π)

Vπ

 let's iteratively find Vπ for a random policy
in our mini grid world
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-1.0

N: V
s,N

  = -1 + 0 = -1
S:  V

s,S
  = -1 + 0 = -1

E:  V
s,E

  = -1 + 0 = -1
W: V

s,W
 = -1 + 0 = -1

with a random policy,
we are equally likely to take any move, 

so:

V
s 
= (-1 + -1 + -1 + -1)/4 = -1

immediate 
reward

current 
prediction 

for 
cumulative 
reward in 
new state
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  next iteration…
new value function

becomes
old value function

(“current prediction
for cumulative reward”)
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let's use our value function to produce a
(greedily) optimal policy! 
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the greedy policy converges faster than the value function!

(all we need to find the best policy for a value function is 
the correct ordering of states and not their exact values)

in this case, the policy was converged by k=3
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what could we do to improve this even further?

now that we have a better (non-random) policy,
let's use our current (greedy) policy to choose our
action weighting iterate through the value function

“on-policy learning”



  

optimal value function!

optimal policy!
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