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what pieces are on the board are “features” of that state

we often create heuristic value functions based on
the features of the board (environmental) state 

e.g. value of a board state = weighted sum of pieces on board:
value  = #pawns * 1 + #bishops * 3 + #knights * 3 + #rooks * 5 + #queens * 9
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linear weighted sums are fast, so they're used often
(the whole point of a heuristic function is to save time!)

but this case assumes independent (non-interacting) pieces

and doesn't account for different layouts/arrangements

(you could have a different feature for each
combination of piece and position) 

647 = over 100,000,000,000 features...



  

how do we efficiently build flexible and robust feature sets?

optimization on non-linear function approximators

(e.g. machine learning with artificial neural networks)
(more on this later… )



  

another heuristic approach to reducing tree complexity
is just to randomly sample along paths to estimate

the value of a given state or action
(“Monte Carlo Tree Search”)

this has the upside of seeing the true end-of-game value
(though you could also stop short and use a heuristic instead… )

but it has the downside of only sampling random paths
(i.e. unintelligently sampling)

(and as we saw from alpha-beta pruning,
many paths don't actually matter much)
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how can we better (more intelligently) sample paths?

we can't use the optimal policy – because we don't know it

we can't use our current policy, because we'd
only learn the values along that path

(i.e. no exploration, only exploitation)



  

optimism under uncertainty!

recall from A*, that we were able to get optimal
exploration by having a optimistic heurestic function

(i.e. assuming states we hadn't seen before were good,
and therefore that an optimal policy would try them) 



  

Upper Confidence-bound Tree Search
(UCT search)



  

measure not just the mean estimated value of a state/action
but keep a confidence interval (e.g. your estimated variance)

take the most optimistic value in this range of uncertainty
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nodes that have been sampled more
(i.e. that we are more confident about the true value of)

have a smaller exploration bonus



  

AlphaGo application



  



  



  



  

stochastic games



  

2*0.9+3*0.1=       
2.1

1*0.9+4*0.1=
1.3          

2 3 1 4

use expected value through chance nodes in stochastic games



  

note:  be careful of very small or large terminal values
when using mean expected value for intermediate nodes!

(because mean value are largely swayed by outliers)
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