

Introduction to Artificial Intelligence
COSC 4550 / COSC 5550

Professor Cheney
9/22/17

what pieces are on the board are “features” of that state

we often create heuristic value functions based on
the features of the board (environmental) state

e.g. value of a board state = weighted sum of pieces on board:
value = #pawns * 1 + #bishops * 3 + #knights * 3 + #rooks * 5 + #queens * 9

+1 +1 +1+1+1 +1+1+1 +1 +1+1+1+1-1-1-1 -1 -1 -1 -1 -1 -1-1 -1 000000000000000000000000

value
function

evaluation

(+0.7) (-0.2) (-0.6) (+0.1)(+0.2)(+0.6) (-0.8)(-0.8) (-0.3) (+0.1)(+0.5)(+0.3)(+0.1)

linear weighted sums are fast, so they're used often
(the whole point of a heuristic function is to save time!)

but this case assumes independent (non-interacting) pieces

and doesn't account for different layouts/arrangements

(you could have a different feature for each
combination of piece and position)

647 = over 100,000,000,000 features...

how do we efficiently build flexible and robust feature sets?

optimization on non-linear function approximators

(e.g. machine learning with artificial neural networks)
(more on this later…)

another heuristic approach to reducing tree complexity
is just to randomly sample along paths to estimate

the value of a given state or action
(“Monte Carlo Tree Search”)

this has the upside of seeing the true end-of-game value
(though you could also stop short and use a heuristic instead…)

but it has the downside of only sampling random paths
(i.e. unintelligently sampling)

(and as we saw from alpha-beta pruning,
many paths don't actually matter much)

+1 +1 +1+1+1 +1+1+1 +1 +1+1+1+1-1-1-1 -1 -1 -1 -1 -1 -1-1 -1 000000000000000000000000

Monte
Carlo

rollouts

(-0.2)

(-0.5) (0)(+1)(-1)

how can we better (more intelligently) sample paths?

we can't use the optimal policy – because we don't know it

we can't use our current policy, because we'd
only learn the values along that path

(i.e. no exploration, only exploitation)

optimism under uncertainty!

recall from A*, that we were able to get optimal
exploration by having a optimistic heurestic function

(i.e. assuming states we hadn't seen before were good,
and therefore that an optimal policy would try them)

Upper Confidence-bound Tree Search
(UCT search)

measure not just the mean estimated value of a state/action
but keep a confidence interval (e.g. your estimated variance)

take the most optimistic value in this range of uncertainty

of wins
(using node i)

of games
(using node i)

mean
value

estimate
+ “exploration

bonus”
total #

of games
(including

paths w/o i)

of games
(using node i)

(constant)

nodes that have been sampled more
(i.e. that we are more confident about the true value of)

have a smaller exploration bonus

AlphaGo application

stochastic games

2*0.9+3*0.1=
2.1

1*0.9+4*0.1=
1.3

2 3 1 4

use expected value through chance nodes in stochastic games

note: be careful of very small or large terminal values
when using mean expected value for intermediate nodes!

(because mean value are largely swayed by outliers)

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19

