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ABSTRACT
Natural frequency tuning is a vital engineering problem.
Every structure has natural frequencies, where vibrational
loading at nearby frequencies excite the structure. This
causes the structure to resonate, oscillating until energy is
dissipated through friction or structural failure. Examples
of fragility and distress from vibrational loading include civil
structures during earthquakes or aircraft rotor blades. Tun-
ing the structure’s natural frequencies away from these vi-
brations increases the structure’s robustness. Conversely,
tuning towards the frequencies caused by vibrations can
channel power into energy harvesting systems. Despite its
importance, natural frequency tuning is often performed ad-
hoc, by attaching external vibrational absorbers to a struc-
ture. This is usually adequate only for the lowest (”funda-
mental”) resonant frequencies, yet remains standard practice
due to the unintuitive and difficult nature of the problem.
Given Evolutionary Algorithms’ (EA’s) ability to solve these
types of problems, we propose to approach this problem with
the EA CPPN-NEAT to evolve multi-material structures
which resonate at multiple desired natural frequencies with-
out external damping. The EA assigns the material type of
each voxel within the discretized space of the object’s exist-
ing topology, preserving the object’s shape and using only
its material composition to shape its frequency response.

Categories and Subject Descriptors: J.6
[Computer-Aided Engineering]:Computer-aided design
General Terms: Algorithms, Design, Experimentation
Keywords: Genetic Algorithms, Design Automation, Fre-
quency Tuning, Vibration Analysis, Structural Optimization

1. INTRODUCTION
In engineering mechanics, the response of a structure to

vibrational loads is of acute interest and importance. Ev-
ery object will exhibit some motion when excited with any
periodic load – such as vibrations. But vibrations at cer-
tain frequencies will excite certain objects with greater in-
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Figure 1: (left) Resonant vibrations are a common
source of fragility in natural objects. Here a glass
fails in the presence of an acoustic wave at reso-
nance. (right) On a larger scale, structural failure
through periodic loading of the Broughton Suspen-
sion Bridge caused its collapse in 1831 due to the
resonance of the solders marching in lockstep [14].

tensity. The natural frequencies of each object dictate the
frequencies of vibrations which exhibit particularly intense
responses. In many cases, this type of loading is harmful to
the system – larger responses put more stress on the struc-
ture. The energy trapped in the structure through these
oscillating motions is not efficiently dissipated into the sur-
rounding environment in these cases, leading to weakening
or even failure over time (Fig. 1).

Large arch dams in earthquake prone areas are one ex-
ample of antagonistic periodic loading, where oscillations at
resonance encourage cracking and rupture through brittle
concrete [1]. Wind turbine blades are another instance of
this, where rotation at a resonant frequency may cause tip
deflection that stresses the blades and lowers their effective-
ness [15]. In aerospace applications, or other vehicles pro-
ducing massive propulsive loads, the vibrations caused can
be particularly damaging [6].

On the other hand, some applications may benefit from
increased oscillatory response. Oscillations of larger mag-
nitude contain more energy, which are ideal for power har-
vesting mechanisms such as microelectromechanical systems
(MEMS) like piezoelectric microcantilevers. In this case, the
lack of energy dissipation from structures with resonant fre-
quencies close to the frequency of the vibrations enhances
the efficiency of these energy harvesting systems [3, 22].

However, the process of tuning structures to have specific
resonant frequencies remains largely unintuitive – changes to
the material properties at one point in a structure often lead
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to non-linear effects on its vibrational response, both near
and far from the point of change. Thus existing methods
usually change the shape of the structure, often involving
the addition of mass dampers to the system or requiring
significant structural modifications. In cases where weight
and size are at a premium, such as aerospace or remote sens-
ing, these solutions are unsatisfying. Additionally, many of
these damping strategies are only useful for the first (”fun-
damental”) resonant frequency.

In many cases, important structures must interface into a
pre-existing system, be robust (free from fragile additions),
or serve aesthetic purposes. In existing structures the topol-
ogy has often already been optimized, such as airfoils tuned
for aerodynamic efficiency. In these cases, it would be ad-
vantageous to perform vibrational optimization of structures
which preserves the overall shape of the object while also
giving it desirable vibrational properties.

Muti-material design involves the use of different mate-
rial types within a given shape to produce overall object
properties outside of those available to the given shape com-
posed of a single material. By optimizing a structure’s vi-
brational response though multi-material design within an
existing envelope, we open new doors towards the study and
implementation of vibrational optimization of these fixed
topology structures. Additionally, with current advances
in multi-material additive manufacturing, we now have the
ability to specify the placement and interwovenness of in-
dividual material droplets with vastly different properties
during the manufacturing of a given structure, making such
designs physically realizable today.

In this study, we optimize the two dimensional projection
of a fixed-free cantilevered beam, with the first ten natural
frequencies optimized to reproduce a randomly chosen res-
onant frequency profile. This is a particularly difficult and
unintuitive problem because the material properties at each
voxel are coupled (often non-linearly, and non-locally) with
the material properties at every other voxel to produce the
vibrational response of the object as a whole. Furthermore,
this static topology responds differently to vibrations at dif-
ferent frequencies, making ad-hoc tuning of more than one
or two natural frequencies exceptionally challenging.

Due to the unintuitive nature of the problem, we use evo-
lutionary computation to traverse this design space – specif-
ically the evolutionary algorithm CPPN-NEAT. We choose
this because the Compositional Pattern Producing Network
(CPPN) genome provides a compact and evolvable represen-
tation of the discretized physical design space necessary for
this problem. We use this EA to optimize the placement of
two materials (stiff and soft) at each discretized voxel of the
structure’s original shape envelope. We optimize towards
randomly chosen frequency profiles (which specify the first
ten natural frequencies of a structure), and show the promise
of this approach to become an automated design platform
for structural vibration optimization going forward.

2. BACKGROUND
Controlling system performance through the frequency

domain is a classical idea [18], but conventional engineering
strategies have remained largely unchanged since the early
20th century. In many cases, harmful vibrations are attenu-
ated by directing energy away from the most sensitive parts
of the system, to another auxiliary system. This is done
through the addition of tuned vibrational absorbers (TVA)

[17, 25, 26]. However these systems come with the tradeoff
of increasing the mass and complexity of the original struc-
ture. This typically involves augmenting the system with
spring-mass element or small cantilever with a first resonant
frequency tuned to that of the undesired excitation, where
the undesirable energy is contained within oscillations of this
auxiliary structure until it is dissipated though friction.

This process is not only inefficient, but fails to fully ex-
plore the design space - as the attachment location and
parameters of these devices are often chosen through in-
tuition and physical guess-and-check iterations by the en-
gineers, and are thus biased by the engineer’s assumptions
and training. Additionally, the amount of energy that can
be absorbed by these types of systems is limited. As the
TVA becomes large, its own dynamics begin coupling with
the original system. This not only produces harmful vi-
brations within the original structures, but also changes its
resonance profile and further complicates design. Further-
more, volume constraints of the system, such as inside the
fairing of a rocket in launch, inherently restrict the size and
shape of a TVA.

Some work has examined changing the system’s topology
to have a desired frequency profile without the addition of
other components. Many of these strategies optimize the
placement or parameter settings of a few predetermined ba-
sic structures, such as rods or trusses [13, 23, 7]. Duhring et
al. studied the automatic design of structures with desired
natural frequencies using homogenization [10]. However,
this method could only optimize for a single frequency band,
trying to maximize or minimize the frequency response be-
tween a set of frequency borders. This strategy also involved
the generation of structures with complex and unpredictable
shapes, rather than optimizing the response of an existing
structure’s topology. Du and Olhoff used topological opti-
mization to automate the design of a voxelized plate struc-
ture with a binary material array to minimize sound power
flow [9]. However, their designs were also constrained to the
optimization of just a single frequency.

Our system expands upon these strategies by allowing us
to optimize an arbitrarily large number of natural frequen-
cies of a structure. Additionally, any number of material
values can be used for any geometry. Since our search of the
design space is topology-preserving; the final product will
still have the shape of the original design, ensuring it will
have the same functionality and maintain previous topology
optimization, with only natural frequencies changed.

3. METHODS
Our method involves tuning the natural frequencies of a

structure, which for lightly damped systems well approx-
imates the resonant frequencies (where vibrational energy
resonates to create sustained oscillations). First, the user
specifies a design geometry. In many practical cases this is a
pre-existing object shape, in this study we simply use a 2D
projection of a cantilever beam, fixed on one end. Next the
user produces a list of n desired natural frequencies. These
frequencies are again dependent on the specific application;
vibration in the environment can be found by measuring ex-
citation loads with an accelerometer and applying the Dis-
crete Fourier Transform [8]. Here, we select the frequency
profile randomly (Sec. 3.4). Finally a selection of materials
from which to construct the object is necessary. These de-
pend on the additive manufacturing capabilities and supplies
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Figure 2: The CPPN genome iterates through each
voxel in the discretized design space, placing either
a soft or stiff voxel at each location to produce the
phenotype structure it encodes (Sec. 3.2)

available to the user, and in this case is simply represented
by two idealized materials, one an order of magnitude stiffer
than the other. The structure to be optimized is meshed
in a uniform voxelized grid. In this study, the beam is dis-
cretized into a 40x10x1 set of uniform cubic voxels. Each
of these voxels is assigned a material according to the phe-
notype described by its associated Compositional Pattern
Producing Network (CPPN) genome (Sec. 3.2). The natu-
ral frequencies of the structure are calculated (Sec. 3.1), and
used to determine the individual’s fitness (Sec. 3.3). Indi-
viduals who best minimize the error between the calculated
and desired natural frequency profile are disproportionally
favored to reproduce (and are subject to both genetic muta-
tions and crossover in this process), creating the next gen-
eration to again iterative this evolutionary process.

3.1 Approximating Natural Frequencies
with FEM

Determining the harmonic behavior of an object is equiva-
lent to solving for the eigenvalues of the matrix representing
the FEM mesh of the structure. The shape and material of
the system will govern the frequency at which each of the
n desired natural frequencies lie. There is one natural fre-
quency per degree of freedom of the system, but typically the
number of nodes required for accurate simulation far exceeds
the number of natural frequencies in an engineering range
of interest. In this case of the 40x10 discretized voxels, the
400 voxels are approximated by 1301 nodes, with 8 nodes
per quadrilateral element (many nodes are shared between
adjacent elements). This is more than adequate to approx-
imate the first 10 natural frequencies. These are computed
using a generalized conjugate residual method, to a residual
error < 10−8. For this computation we employ Elmer, a
popular open source finite element software for multiphys-
ical problems, developed and maintained by the CSC - IT
Center for Science [19].

3.2 CPPN-NEAT Evolutionary Algorithm
CPPN-NEAT has been repeatedly described in detail [24,

5, 4, 12], so we only briefly summarize it here. A Compo-
sitional Pattern Producing Network (CPPN) is similar to a
neural network, but its nodes contain one of multiple math-

ematical functions (sine, cosine, Gaussian, sigmoid, linear,
square, or positive square root). CPPNs evolve according to
the NEAT algorithm, which is largely based on: complexifi-
cation of genomes over time, speciation within the genotypic
space for diversity maintenance, and tournament selection
within species [24].

The CPPN produces a spacial output pattern that is built
up from these functions’ geometric transformations of the
input gradients (changing values of each input coordinate
over the space). Because the nodes have regular mathemat-
ical functions, the output patterns tend to be regular (e.g. a
Gaussian function can create symmetry and a sine function
can create repetition). In this paper, each voxel has x, y,
and z coordinates, polar coordinates (r and θ) in each of
the x, y, and z planes, and a measure of the voxel’s dis-
tance from the center of the search space (d), which are all
input in the range [−1, 1], describing the relative location of
each voxel in this geometric design space. The single out-
put of this network is interpreted as either a stiff material
present in that voxel’s location for a value above zero, or a
soft material present for a value less than or equal to zero.

Alternate experiments were conducted with the value of
the output node ([−1, 1]) representing a mixture of the stiff
and soft materials with a compliance representative of an
interpolation between the maximally stiff or soft materials
at each endpoint. While the real valued compliance affords
more flexibility in the design space, the problem of physically
mixing materials during the additive manufacturing process
is not yet a solved problem [16].

In order to produce a structure from a CPPN, each voxel
in the discretized design space is iterated though. At each
iteration through this space, the voxel’s coordinate are in-
put into the network, which is then undergoes it’s update
function to produce an output value. The value out this
output determines the type of voxel which is placed at this
location. A positive output stipulates the placement of a
stiff voxel (denoted by to a Young’s Modulus (E) of 10 gi-
gapascal (GPa), and Poisson’s ratio of 0.3), while a negative
output value produces a soft voxel at this location (result-
ing in a Young’s Modulus of 1 GPa, and the same Poisson’s
ratio of 0.3). After iterating through each voxel within the
design space, the CPPN genome has produced a phenotypic
description of the structure, which can then be analyzed to
find it’s natural frequencies, or sent to a 3D printer for fab-
rication. This iterative process is outlined in Fig. 2.

3.3 Fitness Function
The quality (fitness) of each structure’s ability to match

a desired frequency profile of n frequencies is described by:

1
Σn
i=1(n−i+1

n )E(i)2

Where n is the number of frequencies being optimized, and
E(i) is the relative error in matching the ith frequency. The
linear weighting factor n−i+1

n
is to place more weight on the

primary frequencies than the later ones, which contribute
less significantly to the behavior of real world systems. For
example: for frequency 1 of 10, n−i+1

n
= 10−1+1

10
= 1, thus

the first frequency contributes to the fitness penalty with a
weight of 1. For frequency 6 of 10, this weighting factor be-
comes 10−6+1

10
= 0.5, so the 6th frequency is discounted such

that it’s relative error is only counted by half of that be-
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longing to the first frequency. Similarly, the 10th frequency
has a discount factor of 0.1, meaning that it’s relative error
contributes to the overall fitness only one tenth the amount
which the error of the 1st frequency does.

The motivation for using the weighted sum of the squared
errors is simply a standard practice to negate the sign of the
error terms, and to more heavily penalize larger deviations
from the desired frequencies.

3.4 Producing Random Target Frequencies
In order to optimize a structure to match a given fre-

quency profile, such a profile must exist within the limits of
the structure’s realizable material properties. Thus to pro-
duce random frequency profiles to be used as targets for the
optimization process, we use the following:

fn = fstiff
n +fsoft

n

2
+ fstiff

n −fsoft
n

2
∗ rand(−0.5, 0.5)

For frequency number n = 1, 2, ..., 10. Where fstiff
n is the

nth frequency of a beam fully populated with maximally stiff
voxels (and conversely with soft voxels for fsoft

n ). Thus the
above equation produces a random number from the middle
50% of the range between these minimum and maximum
frequencies. Much like the fact that a primary frequency
above or below that of the fully stiff or soft beams is not
physically realizable with the chosen materials, the frequen-
cies at (or near) the edge of this allowable range necessitate
beams that are (almost) entirely filled with stiff/soft vox-
els, and thus may or may not be realizable in a case where
more than a single frequency is being optimized for. For
this proof of concept we conservatively constrain ourselves
to the middle 50% of this range, where we feel a balance of
both materials is likely to produce a vast array of frequency
responses from the relative positions of voxels rather than
the proportion of voxel types themselves. Future work will
experimentally examine how optimization success drops off
as these goals become less and less physically realizable with
the expansion of the allowable target frequency range.

After all 10 frequencies are chosen, the values are then
sorted from smallest to largest, as natural frequencies must
occur in a monotonically increasing order. The 10 target
frequencies for four random seeds are given in Fig 3, as well
as those of the beams fully populated with stiff or soft voxels.

Full Full Rand. Rand. Rand. Rand.
n Soft Stiff #1 #2 #3 #4

1 0.782 1.596 1.215 1.062 1.044 1.315
2 4.666 9.549 7.994 7.279 6.858 6.613
3 11.973 24.894 18.592 16.059 17.447 19.177
4 12.220 25.087 15.594 17.749 21.404 20.691
5 22.080 45.475 30.026 29.250 33.929 38.461
6 33.513 69.209 49.484 52.985 52.274 49.015
7 35.868 74.574 51.903 59.555 55.862 58.415
8 45.964 95.121 65.639 76.686 59.337 69.871
9 59.072 122.436 84.398 79.505 77.530 97.132
10 59.598 123.911 105.121 87.085 85.164 97.485

Figure 3: The first 10 natural frequencies (in MHz)
for beams with all soft voxels or all stiff voxels gives
the boundaries for the creation of 4 random fre-
quency target profiles (Sec 3.4).

3.5 Control Treatment
In order to test the validity of the evolved structures, a

control method was devised. To isolate the effects of the op-
timization towards natural frequency matching structures,
the control groups consist of the same 32 independent runs
of 30 CPPN genomes evolving for 1000 generations. This
negates any natural advantage that the genomic represen-
tation of the CPPN might have in this domain, as well as
the complexification of the NEAT algorithm over time. In
the control setup, however, no preferential reproduction is
afforded to those individuals who more closely match the
desired frequency profile, but rather this selection happens
at random. At the end of the 1000 generations of this evo-
lutionary drift, the resulting structure are still compared
to each of the four Random Frequency Profiles and their
effectiveness is measured in the same manner as with the
experimental treatments.

4. RESULTS
All treatments below consist of 32 independent runs, with

populations of 30 individuals evolved for 1000 generations.

4.1 Statistical Measures
The data resulting from the control conditions pass the

Shapiro-Wilk test for normality [21] (with p<0.0329 for all
10 frequencies), and thus error bars are used to describe
this data in the following plots. However, the experimental
treatments routinely fail the Shapiro-Wilk test for normality,
with many of the 10 frequencies for each random frequency
profile falling above the p=0.05 confidence cutoff for the nor-
mality of the distribution. Given that the shape these distri-
butions are unknown, we employ bootstrapping to produce
95% confidence intervals to graphically describe the exper-
imental data [11]. Given that at least one distribution for
any statistical tests will be an experimental treatment, we
employ the Mann-Whitney U test, as it does not require the
assumption of normality of the data, yet performs almost
as well as the student’s t-test on normally distributed data
(such as the control data) [20].

4.2 Statistical Data

4.2.1 Optimization for Random Frequency Profiles
We optimize the material makeup of our 40x10x1 voxel

beam to set its natural frequencies to resonate with Random
Frequency Profile #1. This is done for 32 independent trials,
using a ”soft” material (Young’s Modulus(E) of 1 gigapas-
cal(GPa), and Poisson’s ratio of 0.3), and a ”hard” material
(Young’s Modulus of 10 GPa, and Poisson’s ratio of 0.3) as
the material library. We compare the relative error for the
task of matching with Random Frequency Profile #1 with
the control conditionfor each of the n = 10 desired frequen-
cies, resulting in 10 different p-values. A one-sided U test
is employed in order to test the hypothesis that optimized
structures will produce lower errors than the control struc-
tures. All of these 10 measures fall below the 95% confidence
threshold, as max(p-values) < 1.008 ∗ 10−5, showing statis-
tical significance that our system can effectively optimize all
of the first 10 frequencies of this desired frequency profile.

In order to test the sensitivity of this analysis on this ran-
domly generated target frequency profile, three additional
desired frequency sets are randomly produced. These each
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Figure 4: Examination of the effect of particular
random frequency profile targets on the resulting
optimization process. Structures are optimized to
match (red stars) Random Frequency Profile #1, (blue
squares) #2, (green circles) #3, or (magenta crosses) #4.
While it is not possible to compare the responses to
the same frequencies across treatments here, since
no two treatments optimize towards the same fre-
quency, we can compare each Random Profile to a
control treatment (without selection pressure), plot-
ted as black triangles). In all 10 frequencies for all
4 runs, the optimized structures outperform their
control counterparts against the same frequencies
(with all p-values < 1.008∗10−5), suggesting the abil-
ity of this technique to effectively evolve structures
for various frequency profiles.

consist of n = 10 desired natural frequencies, but each of
these frequencies differs from those in Random Frequency
Profile #1, so a comparison coupled by desired frequency
(in MHz) is no longer possible. One could imagine instead
coupling by frequency number, and comparing the accuracy
of n = 1 for each of the four frequency profiles, then compar-
ing n = 2 for all four, and so on. However, actual frequencies
between desired profiles can greatly differ: even when com-
paring with the equivalent frequency number (for example
15.594 MHz for Random Profile #1 is the 4th desired nat-
ural frequency of the system, which has the value 21.404
MHz for Random Profile #3 – a value 37% higher). Addi-
tionally, with the highly non-linear nature of the frequency
tuning domain, the effects of differences in other frequencies
may play a major role in the overall structural evolution
strategy and influence desired frequencies that do happen
to be closely coupled by both n and frequency value (in
MHz). Instead, we attempt to compare ”apples-to-apples”
but assessing each of the optimized structures against con-
trol structures evolved through a random walk. These ran-
com control structures are then compared to the same tar-
get frequencies for each of the Random Frequency Profiles.
As seen in Fig 4, each of these four independently generated
random frequency profiles show a statistically significant im-
provement over their associated control treatments (with the
max p-value of the Mann-Whitney U test > 1.008 ∗ 10−5).
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Figure 5: Examination of the effect of number of ma-
terials used on the performance of optimized struc-
tures. Both data sets use the same random seeds
and target frequency (Random Frequency Profile
#1). (red stars) Optimized structures from a combi-
nation of the maximally stiff or maximally soft vox-
els only (2 materials). (blue circles) Each voxel can
take on one of 10 intermediate material properties
(including the two endpoints in the previous treat-
ment). A two-sided Mann-Whitney U test lacks sig-
nificant at the 95% confidence level with p-values
> 0.0745 for all frequencies except: n = 4 (15.594
MHz) with p-value < 0.029, and n = 10 (105.121
MHz) with p-value < 0.0005. This suggests that for
most frequencies (besides n = 4, 10) the addition of
intermediate material properties often does not sig-
nificantly impact the frequency matching ability of
the resulting structures.

4.2.2 10 Materials vs. 2 Materials
Fig. 5 shows the effect of intermediate materials. In this

setup, we optimize structures via the same method as in
Sec. 4.2, where the CPPN genome specifies the material
present in each voxel of the structure by again choosing
from one of two materials – either stiff (E=10 GPa) or soft
(E=1 GPa). To explore the impact of this assumption of
two available materials, we compare this to another treat-
ment in which there are 10 material choices, representing
materials of intermediate compliances (between and includ-
ing the endpoints of the fully stiff and fully soft voxels as
before). Materials 2-9 are assigned a Young’s Modulus (E)
of 2- 9 GPa, respectively, with a constant Poisson’s ratio of
0.3. The results of a two-sided Mann-Whitney U test show
that 8 of the 10 desired frequencies showed no significant
difference (min(p-value) > 0.0745. The exceptions to this
rule were the frequencies of 15.594 MHz (n = 4), which had
a p-value < 0.029, and 105.121 MHz (n = 10) with p-value
< 0.0005. In the case of the final (n = 10) frequency of the
group, the 10 material structures actually performed worse
than their 2 material counterparts. Thus, in general, we be-
lieve that using 10 intermediate materials does not typically
produce significantly better optimized structures than those
made with just the two extreme materials.
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Figure 6: Six examples of stereotypical structures
evolved for Random Frequency Profile #1. Black
pixels represent stiff material, while white pixels
represent soft material. Optimized structures of-
ten consist of one or two large continuous regions.
They often span all or nearly all of the design space
allocated in both width and length. They also of-
ten display minor branching structures off of this
primary long-spanning structure.

4.2.3 Optimization for the First Natural Frequency
In the course of the work, we also explored other fitness

function setups. Of particular interest is the one which re-
wards only (or disproportionately more) for the matching
of the first natural frequency to its desired target. This is
of particular interest because the optimization of the first
natural frequency alone is considered state of the art in fre-
quency tuning via external damping, and we would like to
show that our approach also can be compared directly to tra-
ditional approaches. In this case, the following data comes
from a quadratic-scaling fitness function. This is a variation
on the fitness function described in Sec. 3.3, with the n−i+1

n
term squared, such that the primary natural frequency now
accounts for 100 times as much weight as the 10th natural
frequency does (as opposed to 10 times more in the linear
scaling scenario above). In this scenario (not plotted here),
the 32 independent runs shows a mean of 0.106% error for
the primary natural frequency, with a 95% bootstrapped
confidence interval of [0.104%, 0.110%] error. One could also
imagine this trend being even more extreme should the en-
tire weight be placed on the primary frequency.

4.3 Vibrationally Optimized Beam Examples
Fig. 6 shows a representative sample of interesting beams

evolved to match Random Frequency Profile #1. The top
end has a fixed boundary condition, where the bottom is
free; white and black voxels correspond to the soft and stiff
materials, respectively. These beams tend to feature a long
vertical primary structures (or two connected shorter beams
spanning the length of the beam), often with horizontal pro-
trusions acting as secondary structures.

Fig. 7 shows beams which are stereotypical of the struc-
tures evolved in response to Random Frequency Profile #2.
These structures tend to exhibit greater curvature, exhibit-
ing circular patterns from the center of the beam, which
presumably rely heavily on the gradients caused by the po-
lar coordinate inputs to the CPPNs. These structures seem
more likely than Fig. 6 to include material discontinuities

Figure 7: Six examples of stereotypical structures
evolved for Random Frequency Profile #2. These
structures appear to favor sweeping curvature in
their designs, often with repeating or symmetric mo-
tifs. This group is shows more use of thinly (or non-
)connected areas of stiff material than group #1.

Figure 8: Typical structures evolved to match the
natural frequencies of Random Frequency Profile #3
display very simple structures with long vertical mo-
tifs, often displaying symmetry or repetition along
the midpoint of the vertical axis, where a thin strip
of stiff voxels connects the top and bottom features.

and have multiple floating sections of continuous material
instead of a single one than spans the length of the beam.

Figs. 8 and 9 display structures optimized for the remain-
ing target frequency profiles. In Fig. 8, the results of op-
timization towards Random Frequency Profile #3 display
simple vertical structures, often with a repetition or sep-
aration point along the mid-line between top and bottom
halves of the structures. While in Fig. 9, structures evolved
for Random Frequency Profile #4 display a distinct pattern
of stiff material near the center of the beam, with mostly
soft voxels at the top and bottom edges of the structures.
These unique structural types, recurring frequently within
treatments, but rarely for treatments optimizing towards an-
other random frequency profile, provide further evidence of
the algorithm’s ability to produce multi-material placements
suited for specific vibrational optimization problems.

Alternatively, Fig. 10 showcases the beams created from
a process without the selection pressure to optimize towards
a specific frequency profile. These structures appear more
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Figure 9: The top six performing structures opti-
mized for Random Frequency Profile #4. This fre-
quency profile tends to drive the evolution of struc-
tures with stiff voxels concentrated around the cen-
ter, with near-symmetric ”wings” stretching verti-
cally from the primary horizontal structure.

pixelated, featuring isolated single, or small groups of, vox-
els. These structures tend to display very broad divisions,
such as a single fuzzy line splitting stiff and soft sides of
a beam. The presence of these structures implies that the
CPPN itself complexifying over time is not in itself sufficient
to produce the crisp lines, solid patches, and features such as
symmetry and repetition found in Figs. 6-9. But suggests
that selection towards specific frequencies, combined with
the apparent vibrations benefit of such features for these
specific cases, is required to produce these motifs.

4.4 Fabricated Structures
While these structures are evolved in simulation, the op-

timized beams are easily produced via additive manufactur-
ing. Fig. 11 shows two optimized structures in simulation,
and their fabricated counterparts. While the simulated ma-
terials in this study were not modeled after any real-world
materials, and thus the printed structures were not tested
for their actual natural frequencies, future and ongoing work
will demonstrate both of these features.

5. DISCUSSION
The above describes a system in which vibrational proper-

ties of an existing topological design are optimized through
the placement of soft and stiff voxels according to an evolved
Compositional Pattern Producing Network. The culmina-
tion of the results presented previously implies that this new
system is indeed capable of producing structures which are
optimized to match a predetermined set of natural frequen-
cies. Furthermore, the system is fairly robust to the specific
natural frequencies, and their relations to each other – at
least within the limited space we explored between range of
frequencies existing in single material (all stiff or all soft)
beams. We compared the results of these beams to those
created from a random evolutionary walk to show the abil-
ity of the system to optimize for many natural frequencies
simultaneously, since there have not existed previous studies
which optimize as many as 10 natural frequencies which we
could compare our results to. Existing structural optimiza-
tion methods such as homogenization allow for the optimiza-
tion of one or few frequencies, but rely heavily on spatially-

Figure 10: Six examples of stereotypical structures
from the control group that features a random walk
through the genotypic space in lieu of selection pres-
sure towards high performing structures. The re-
sulting structures appear to be much noisier, with
many unconnected single pixels. This suggests that
the continuous shapes from the previous trials are
preserved because of their vibrational advantages.

local gradients or properties which do not capture the highly
coupled relationships across a structure that occur when op-
timizing for multiple frequencies. The employment of an
evolutionary algorithm helps to remove the top-down de-
sign from this difficult problem, and the use of a CPPN
genome creates correlated global mutations which evidently
is helpful in optimizing the spacial coupling which made this
problem previously unsolvable. In order to compare to the
state of the art single frequency optimization, we show that
our method can move an object’s natural frequency to the
order of a tenth of a percent error, without having to affect
it’s existing topology or augment it with dampers.

Arguably the most interesting of all, are the examples of
optimized topologies in Figs. 6-9. The differences between
the strategies in designing these structures, at such a basic
level that it is immediately obvious to the eye, display the
flexibility and creativity of design which evolutionary algo-
rithms have previously made their acclaim [2]. The ability
to produce structures that are inherently and consistently
different in their fundamental layout and design strategy, at-
tuned to each new scenario (as opposed to minor variations
on a preexisting paradigm) provide the hope that future
work with this system will demonstrate the ability to pro-
duce effective and realizable solutions specifically designed
for the many real-world applications of vibrational analysis.

6. FUTURE WORK
Given the novelty of this work, the potential for future

work is nearly limitless. We are currently upgrading this
system to produce 3D structures which include boundary
conditions outside of classical beams, running experiments
on a larger number of frequencies and on a less restricted
set of desired frequency profiles, and exploring the effect of
finer resolution on this design paradigm.

It is also not yet clear how the system will approach de-
mands to push natural frequencies away from wide frequency
bands, rather than pushing them towards specific targets
(though these two problems are highly related). The fitness
function employed in this work was chosen logically, though
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Figure 11: Optimized designs printed on an Objet
Connex 500. Shown here are voxels of 0.9mm for
visualization purposes, though the resolution on this
3D printer would allow voxels as small as 16 microns.

not rigorously, and further experiments will take place to
provide evidence of it’s effectiveness in relation to others.
Specifically, this applies to multi-objective fitness functions.
One could easily imagine other desirable function properties
of a real world system, such as the minimization of deflec-
tion in a fixed-free beam, which needs to be optimized in
parallel with the structures vibrational properties.

Given the ability the system’s consistent ability to match
all 10 frequencies, it is unknown where the limits of this
paradigm fall. In future work, we push this system to failure,
exploring its limitations on number of frequencies optimized.

7. CONCLUSION
In this work, we approached the tuning of an object’s

natural frequencies without the use of external damping or
changing the shape envelope of the existing object topology.
This problem is of vital engineering importance to produce
parts, objects, and structures with are robust to the struc-
tural weakening and eventual failures caused by vibrations in
many domains such as civil or aerospace engineering. The
inverse case is also an important problem, where systems
that collect energy and drive oscillations of a piezoelectric
beam represent a significant advance in the efficiency of en-
ergy harvesting. Despite the difficulty of this problem, we
show here that we are capable of producing structures which
can optimally place their natural frequencies to match one
of multiple desired resonant frequency profiles of 10 frequen-
cies. We do so by optimizing the placement of multiple
materials within an existing topology with the evolutionary
algorithm CPPN-NEAT. The demonstrated ability to opti-
mize many frequencies simultaneously, as well as the fun-
damental differences in structures optimized across multiple
target frequency profiles show promise for this technique to
soon be a design automation platform for the vibrational
optimization of important real-world structures.
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